Skip to content

Evaluation Layer (L8): Smart Framework Composition Architecture ​

Purpose: Intelligent evaluation orchestration using progressive framework composition with cost optimization and enterprise-grade monitoring capabilities.

Layer Position: L8 (Meta-evaluation layer orchestrating specialized frameworks across L1–L7)

Architecture Philosophy: Progressive framework adoption with intelligent routing - start with 3 core frameworks (80% coverage), scale to comprehensive enterprise stack (95+ coverage) based on system maturity and requirements.

Framework Composition Strategy ​

Phase 1: Core Frameworks (MVP - 0-6 months)

yaml
core_stack:
  primary_orchestrator: "Microsoft Semantic Kernel (Quality: 91/100)"
  rag_specialist: "RAGAS Framework (Quality: 90/100)" 
  development_testing: "DeepEval Framework (Quality: 87/100)"
  
coverage: "80% of evaluation needs"
cost: "$500-1500/month"
team_overhead: "Manageable for 2-4 person team"

Phase 2: Production Stack (6-12 months)

yaml
production_additions:
  application_tracing: "LangSmith Evaluation (Quality: 89/100)"
  comprehensive_observability: "TruLens Framework (Quality: 87/100)"
  
coverage: "90% of evaluation needs"
cost: "$1500-3000/month"
team_overhead: "Requires dedicated DevOps/SRE support"

Phase 3: Enterprise Stack (12+ months)

yaml
enterprise_additions:
  standardized_metrics: "Hugging Face Evaluate (Quality: 86/100)"
  cost_optimization: "LLM-as-Judge Patterns (Quality: 88/100)"
  
coverage: "95+ of evaluation needs"
cost: "$2000-5000/month"
team_overhead: "Requires evaluation engineering team"

Intelligent Evaluation Capabilities ​

Multi-Dimensional Assessment:

  • Effectiveness: Accuracy, relevance, completeness across all layers
  • Efficiency: Latency, cost, resource utilization optimization
  • Safety: Bias detection, content safety, privacy compliance
  • User Experience: Helpfulness, coherence, conversation quality

Smart Framework Routing:

  • Layer-specific optimization: RAGAS for L1 RAG, LangSmith for L4 conversations
  • Budget-aware selection: Automatic framework selection based on cost constraints
  • Quality-driven composition: Multi-framework consensus for critical evaluations
  • Graceful degradation: Fallback mechanisms when frameworks unavailable

Progressive Implementation Strategy ​

Phase 1 Implementation (v0.1 - Core Frameworks):

python
# Smart Framework Orchestrator
evaluation_orchestrator = MnemoverseEvaluationOrchestrator(
    core_frameworks=[
        'semantic_kernel',  # Enterprise orchestration
        'ragas',           # L1 RAG evaluation
        'deepeval'         # Development testing
    ],
    cost_budget_daily=100,  # USD
    quality_requirements={'min_score': 0.8}
)

# Intelligent evaluation with automatic framework selection
result = await evaluation_orchestrator.evaluate(
    layer='L1',
    query="How does hyperbolic embedding work?",
    context=knowledge_graph_context,
    priority='high'  # Uses multiple frameworks for higher priority
)

Evaluation Modes:

  • Development Mode: Local testing with DeepEval + basic RAGAS metrics
  • Staging Mode: Comprehensive evaluation with all available frameworks
  • Production Mode: Cost-optimized evaluation with intelligent framework selection
  • Enterprise Mode: Full observability with compliance tracking and audit trails

Smart Framework Composition Architecture ​

Layer Position: Meta-evaluation orchestrator with progressive framework adoption

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚            L8: Smart Evaluation Orchestrator                   β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Framework      β”‚   Intelligent   β”‚    Cost & Quality           β”‚
β”‚  Composition    β”‚   Routing       β”‚    Optimization             β”‚
β”‚  Engine         β”‚   Engine        β”‚    Engine                   β”‚
β””β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
      β”‚                                       β”‚
      β–Ό Smart Framework Selection              β–Ό Optimized Evaluation
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ CORE FRAMEWORKS (Phase 1)          β”‚ ENHANCED FRAMEWORKS (P2+)  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Semantic Kernel  β”‚ RAGAS Framework  β”‚ LangSmith  β”‚ TruLens        β”‚
β”‚ (Enterprise      β”‚ (RAG Specialist) β”‚ (App Trace)β”‚ (Observability)β”‚
β”‚  Orchestration)  β”‚                  β”‚            β”‚                β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ DeepEval         β”‚ HF Evaluate      β”‚ LLM-Judge  β”‚ Custom Metrics β”‚
β”‚ (Dev Testing)    β”‚ (Standardized)   β”‚ (Cost Opt) β”‚ (Domain Spec)  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                    ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  L1: Knowledge  β”‚ L2: Project β”‚ L3: Orchestr. β”‚ L4: Experience  β”‚
β”‚  RAGAS+SK eval  β”‚ LangS+DE    β”‚ Judge+TruL    β”‚ LangS+SK        β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Core Architecture Components ​

1. Framework Composition Engine

python
class FrameworkCompositionEngine:
    """Orchestrates multiple evaluation frameworks intelligently"""
    
    def __init__(self):
        self.core_frameworks = self._initialize_core_frameworks()
        self.enhanced_frameworks = self._initialize_enhanced_frameworks()
        self.router = IntelligentFrameworkRouter()
    
    async def evaluate_with_composition(
        self, 
        request: EvaluationRequest
    ) -> CompositeEvaluationResult:
        """Smart framework selection and parallel execution"""
        selected_frameworks = self.router.select_optimal_frameworks(
            request, self._get_current_constraints()
        )
        return await self._execute_parallel_evaluation(
            request, selected_frameworks
        )

2. Intelligent Routing Engine

  • Layer-specific routing: Optimal framework selection per Mnemoverse layer
  • Budget-aware selection: Cost optimization with quality guarantees
  • Performance-based routing: Latency vs. quality tradeoff management
  • Fallback mechanisms: Graceful degradation when frameworks unavailable

3. Cost & Quality Optimization Engine

  • Budget management: Real-time cost tracking with automatic limits
  • Quality assurance: Multi-framework consensus for critical evaluations
  • Caching strategies: 60-80% cost reduction through intelligent caching
  • Progressive evaluation: Adaptive depth based on priority and budget

4. Enterprise Monitoring & Compliance

  • Azure AI Foundry integration: Enterprise-grade monitoring and compliance
  • Audit trails: Complete evaluation history with framework attribution
  • SLA monitoring: Real-time quality and performance tracking
  • Security compliance: SOC2, GDPR compliance through Semantic Kernel integration

Progressive Framework Integration Patterns ​

Phase 1: Core Framework Deployment (Weeks 1-4)

yaml
framework_deployment:
  semantic_kernel:
    integration: "Azure AI Foundry + Application Insights"
    capabilities: ["Enterprise orchestration", "Compliance tracking"]
    layers: ["L1", "L2", "L3", "L4"]  # All layers
    
  ragas:
    integration: "Python SDK + Local/API computation"
    capabilities: ["RAG evaluation", "Context assessment"]
    layers: ["L1"]  # Knowledge Graph specialization
    
  deepeval:
    integration: "Pytest integration + CI/CD"
    capabilities: ["Developer testing", "Conversation evaluation"]
    layers: ["L4", "Development workflows"]

Phase 2: Enhanced Framework Integration (Weeks 5-8)

yaml
enhanced_deployment:
  langsmith:
    trigger: "When application tracing needed"
    integration: "LangChain ecosystem + Annotation queues"
    layers: ["L2", "L3", "L4"]  # Complex application flows
    
  trulens:
    trigger: "When comprehensive observability required"
    integration: "OpenTelemetry + Custom instrumentation"
    layers: ["L1", "L3", "L4"]  # System-wide monitoring

Cross-Layer Evaluation Innovation (Phase 2+)

python
async def evaluate_cross_layer_coherence(
    query: str,
    l1_context: dict,  # Knowledge Graph results
    l2_context: dict,  # Project Memory results 
    l3_orchestration: dict,  # Context fusion results
    l4_response: dict  # Experience Layer output
) -> CrossLayerEvaluationResult:
    """Novel cross-layer coherence evaluation - our unique contribution"""
    
    # Information flow analysis
    flow_analysis = analyze_information_flow(l1_context, l2_context, l3_orchestration, l4_response)
    
    # Context preservation tracking
    preservation_score = analyze_context_preservation(query, [l1_context, l2_context], l4_response)
    
    # Layer consistency validation  
    consistency_score = validate_cross_layer_consistency([l1_context, l2_context, l3_orchestration, l4_response])
    
    return CrossLayerEvaluationResult(
        information_flow_quality=flow_analysis.quality_score,
        context_preservation_score=preservation_score,
        layer_consistency_score=consistency_score,
        overall_coherence_score=calculate_overall_coherence(
            flow_analysis, preservation_score, consistency_score
        )
    )

Quality Gates & Thresholds ​

Acceptance Criteria (v0.1):

  • Quality: NDCG@10 β‰₯ 0.60, Precision@5 β‰₯ 0.50, MRR@10 β‰₯ 0.55
  • Performance: P95 ≀ 800ms end-to-end, error rate < 1%
  • Privacy: Zero leakage in block mode, effective redaction in redact mode

Feedback Triggers:

  • Quality degradation: Action triggered when metrics drop 10% below baseline
  • Performance issues: Action triggered when P95 exceeds SLA by 20%
  • Privacy violations: Immediate action for any detected leakage

Datasets ​

  • Gold corpus (JSONL): query, expected_ids[], entities[], layer scope
  • Ad‑hoc tasks: engineering scenarios with curated expected fragments
  • Negative set: privacy‑sensitive prompts to verify redact/block

Record shape (JSONL)

{ "id": "q-001", "query": "hyperbolic embeddings basics", "expected_ids": ["global:..."], "entities": ["hyperbolic"], "layers": ["L1"] }

Acceptance Criteria (v0) ​

  • Quality: NDCG@10 β‰₯ 0.60; Precision@5 β‰₯ 0.50; MRR@10 β‰₯ 0.55
  • Coverage: coverage_entities β‰₯ 0.60 on average
  • Latency: p50 ≀ 300 ms, p95 ≀ 800 ms (orchestration end‑to‑end; comfort target)
  • Stability: error rate < 1% of requests; no hard failures on soft deadlines
  • Privacy: zero leaks with privacy_mode=block; redact applied with privacy_mode=redact

Thresholds (ENV, 0.1)

  • EVAL_NDCG10_MIN=0.60
  • EVAL_P95_MAX_MS=800
  • EVAL_ERROR_RATE_MAX=0.01

Workflow ​

  1. Prepare datasets (gold.jsonl, results.jsonl)
  2. Compute metrics locally with evaluation CLI (v0)
  3. Produce CSV + JSON summary reports
  4. Track regressions vs previous run (threshold gate)
  5. File issues for any failed criterion; attach artifacts

Correlation fields (ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π²ΠΎ всСх Π»ΠΎΠ³Π°Ρ…)

  • request_id, user_id, agent_id, session_id, layer, model_id, tool_id, ts

Quick Start: Smart Framework Composition ​

Step 1: Deploy Core Frameworks (Phase 1)

python
# Initialize smart evaluation orchestrator
evaluation_orchestrator = MnemoverseEvaluationOrchestrator(
    core_frameworks=['semantic_kernel', 'ragas', 'deepeval'],
    cost_budget_daily=100,  # USD
    quality_requirements={'min_score': 0.8}
)

# Intelligent evaluation with automatic framework selection
result = await evaluation_orchestrator.evaluate(
    layer='L1',  # or L2, L3, L4
    query="Your evaluation query",
    context={
        'retrieval_context': ['relevant context'],
        'conversation_history': []  # for L4 evaluations
    },
    priority='high'  # low, medium, high, critical
)

Step 2: Monitor Cost & Performance

python
# Real-time budget monitoring
budget_status = await evaluation_orchestrator.get_budget_status()
print(f"Daily budget utilization: {budget_status['utilization']:.1%}")

# Performance analytics
performance = await evaluation_orchestrator.get_performance_metrics()
print(f"Average evaluation time: {performance['avg_latency_ms']}ms")

Step 3: Optimize & Scale

bash
# Enable advanced caching (60-80% cost reduction)
evaluation_orchestrator.enable_aggressive_caching()

# Add enhanced frameworks when ready (Phase 2)
evaluation_orchestrator.add_frameworks(['langsmith', 'trulens'])

Documentation Index ​

Core Architecture Documents ​

Detailed Specifications ​

Research Foundation ​

Quick Start Guides ​