Orchestration Quick Start Guide β
Goal: Understand and integrate Mnemoverse orchestration in your project in 5 minutes.
What is Orchestration? β
Problem: When AI answers questions, it needs to decide "what information to load and how much" under strict time/token budgets.
Solution: Orchestration = smart decision-making system that:
- Chooses the best sources (project code vs documentation vs global knowledge)
- Balances quality vs speed vs cost
- Delivers exactly what's needed, when needed
30-Second Example β
User: "Fix the auth bug in UserAuth.login"
1. CEO: "I need debugging info, budget=2048 tokens, 500ms max"
2. ACS: "Let me check project code (L2), add docs (L4), maybe global knowledge (L1)"
3. ACS: "Found 15 candidates, ranked by relevance, trimmed to budget"
4. HCS: "Here's your context, ready for the AI model"
Result: Perfect context for the AI to fix the bug
Core Components β
Component | Role | Input | Output |
---|---|---|---|
CEO | Intent + Budget Manager | User request | Structured intent + budgets |
ACS | Smart Context Assembler | Intent + budgets | Ranked, filtered context fragments |
HCS | Delivery System | Context fragments | Formatted response (batch or streaming) |
Implementation Steps β
Step 1: Provider Setup (30 minutes) β
Implement the Provider API for your knowledge sources:
typescript
// Your L2 provider (project code)
app.post('/provider/l2', async (req, res) => {
const { query, entities, top_k, deadline_ms } = req.body;
// Search your project code/docs
const candidates = await searchProjectCode(query, entities, top_k);
res.json({
candidates: candidates.map(c => ({
id: `proj:${c.file}#${c.line}`,
text: c.snippet,
entities: c.entities,
cost_tokens: c.text.length / 4, // rough estimate
source: "L2"
})),
latency_ms: Date.now() - startTime
});
});
Step 2: ACS Integration (20 minutes) β
Connect ACS to your providers:
typescript
// CEO calls ACS
const acsRequest = {
version: "v0",
intent: {
goal: "debug auth bug",
entities: ["UserAuth", "login"],
ops: ["read", "debug"]
},
budgets: {
max_tokens_ctx: 2048,
max_latency_ms: 500
},
risk: { require_citations: true }
};
const acsResponse = await fetch('/acs/render', {
method: 'POST',
body: JSON.stringify(acsRequest)
});
const { fragments, kv_policy, metrics } = await acsResponse.json();
Step 3: Use the Context (5 minutes) β
Feed the assembled context to your AI model:
typescript
const contextText = fragments
.map(f => `## ${f.source}: ${f.id}\n${f.text}`)
.join('\n\n');
const aiResponse = await openai.chat.completions.create({
messages: [
{ role: "system", content: "You are a debugging expert." },
{ role: "user", content: `${contextText}\n\nUser: Fix the auth bug in UserAuth.login` }
]
});
Real Example Output β
json
{
"fragments": [
{
"id": "proj:auth/UserAuth.js#45-78",
"text": "login(credentials) {\n if (!this.validateCredentials(credentials)) {\n throw new AuthError('Invalid credentials');\n }\n // Bug: missing return statement\n this.setSession(credentials.userId);\n}",
"entities": ["UserAuth", "login", "validation"],
"cost_tokens": 82,
"source": "L2"
},
{
"id": "docs:auth-patterns#error-handling",
"text": "Authentication methods must always return session tokens or throw explicit errors...",
"cost_tokens": 45,
"source": "L4"
}
],
"metrics": {
"used_tokens": 127,
"planner_ms": 85,
"total_candidates": 15,
"selected_fragments": 2
}
}
Testing Your Setup β
Use the smoke test:
bash
curl -X POST http://localhost:3000/acs/render \
-H "Content-Type: application/json" \
-d '{
"version": "v0",
"intent": {"goal": "test orchestration", "entities": ["test"]},
"budgets": {"max_tokens_ctx": 500}
}'
Expected: JSON response with fragments and metrics.
Next Steps β
- Read the full documentation:
- Architecture Overview - complete technical details
- Provider API - implement your knowledge sources
- MVP Guide - production deployment checklist
Advanced features:
- Error handling and retries
- Privacy modes and content filtering
- Performance optimization and caching
- Streaming delivery (HCS v0.2+)
Production deployment:
- Performance monitoring
- Budget optimization
- Multi-provider setup
- Security and privacy controls
Getting Help β
- Technical issues: Check errors.md for common problems
- Performance: See metrics.md for optimization guides
- Integration: Review API docs for detailed specs
Time to production: ~2 hours with existing codebase
Maintenance effort: Low - mostly configuration-driven
Performance impact: +50ms average, -60% context noise