Noosphere Architecture (L1) β
Focus: concrete engineering architecture β what exists, how it connects, and what data flows between components. No marketing.
ββββββββββββββββββββββββββββββββββββββββββββββββ
β MCP Interface β
β (JSON-RPC 2.0 Transport) β
βββββββββββββββββββ¬βββββββββββββββββββββββββββββ
β
βββββββββββββββββββΌβββββββββββββββββββββββββββββ
β Meta-Agent Core β
β ββββββββββββββββββββββββββββββββββββββββββ β
β β Pattern Cache Engine β β
β β β’ Query classification β β
β β β’ Success pattern storage β β
β β β’ Intelligent cache lookup β β
β β β’ Continuous learning algorithms β β
β ββββββββββββββββββββββββββββββββββββββββββ β
βββββββββββββββββββ¬βββββββββββββββββββββββββββββ
β
βββββββββββββββΌββββββββββββββββββ
β β β
βΌ βΌ βΌ
βββββββββββ βββββββββββ βββββββββββββββββββ
β Vector β β Graph β β AI Agents β
β Agent β β Agent β β (Specialized) β
β β β β β β
β β’ Embed β β β’ Neo4j β β β’ Librarian β
β β’ Index β β β’ Cypherβ β β’ Researcher β
β β’ Searchβ β β’ Paths β β β’ Validator β
βββββββββββ βββββββββββ βββββββββββββββββββ
Components β
MetaβAgent (Learning Router) β
Router with feedback-driven learning. Core mechanisms:
1. Query Classification
# Conceptual algorithm
classify_query(query, context) β {
type: "semantic|structural|contextual|hybrid",
complexity: 0.0-1.0,
domain: "code|docs|architecture|research",
history_similarity: 0.0-1.0
}
2. Pattern Caching System
# Cache structure
pattern_cache = {
"query_signature": {
"method_sequence": ["vector", "graph", "ai_agent"],
"parameters": {...},
"success_rate": 0.89,
"avg_latency": 234ms,
"last_updated": timestamp,
"usage_count": 42
}
}
3. Intelligent Decision Engine β Cache Hit: instant response via verified method sequence β Cache Miss: invoke appropriate agents and learn from results β Adaptive Learning: update patterns based on quality signals
Specialized Agents β
Vector Agent (Semantic Search)
- Embedding generation using state-of-the-art models
- FAISS/Weaviate integration for scalable similarity search
- Domain-specific embedding fine-tuning
Graph Agent (Structural Relationships)
- Neo4j/DGraph backend for knowledge representation
- Cypher query optimization for complex relationship traversal
- Graph neural networks for pattern recognition
AI Staff Agents (Contextual Intelligence)
- Librarian Agent: Information discovery and cataloging
- Researcher Agent: Deep analysis and synthesis
- Validator Agent: Quality assessment and fact-checking
- Navigator Agent: Complex investigation guidance
Communication Protocols β
Agent-to-Agent Communication
Meta-Agent ββ Specialized Agents
β β
β ββ Request/Response (JSON)
β ββ Status Updates (Event Stream)
β ββ Performance Metrics (Telemetry)
β
ββ Shared Memory Pool
ββ Pattern Cache
ββ Query History
ββ Performance Data
Error Handling & Fallbacks β Circuit breakers for failing agents; graceful degradation and exponential backoff retries
Self-Learning Mechanisms β
Success Pattern Recognition β
The system continuously learns from three sources of feedback:
1. Explicit User Feedback
- Thumbs up/down on search results
- Quality ratings (1-5 stars)
- Relevance scoring for returned content
2. Implicit Behavioral Signals
- Time spent viewing results
- Follow-up query patterns
- Click-through rates on suggested content
3. System Performance Metrics
- Response latency by method
- Resource utilization patterns
- Error rates and recovery times
Decision Caching Algorithms β
Cache Key Generation
def generate_cache_key(query, context):
features = {
'query_embedding': embed(query)[:50], # Dimensionality reduction
'context_hash': hash(context),
'user_profile': get_user_preferences(),
'time_context': get_temporal_features()
}
return hash(json.dumps(features, sort_keys=True))
Cache Replacement Policy
- LFU + Recency: Least Frequently Used with time decay
- Success Rate Weighting: Higher success patterns persist longer
- Adaptive TTL: Time-to-live based on pattern stability
Pattern Evolution
def update_pattern(cache_key, execution_result):
pattern = cache[cache_key]
pattern.success_rate = weighted_average(
pattern.success_rate,
execution_result.success,
alpha=learning_rate
)
pattern.avg_latency = update_moving_average(
pattern.avg_latency,
execution_result.latency
)
if pattern.success_rate < threshold:
mark_for_relearning(cache_key)
Continuous Optimization β
β Metrics/dashboards, A/B tests, adaptive learning rates
Implementation Considerations β
Technology Stack Dependencies β
Core Infrastructure
- MCP Transport: JSON-RPC 2.0 over stdio/HTTP
- Meta-Agent Runtime: Python/Node.js with ML libraries
- Message Queue: Redis/RabbitMQ for agent communication
- Pattern Cache: Redis with persistence for pattern storage
Storage Systems
- Vector Database: Weaviate/Pinecone for embedding storage
- Graph Database: Neo4j for knowledge relationships
- Time Series DB: InfluxDB for performance metrics
- Document Store: MongoDB for unstructured data
Machine Learning Stack
- Classification: scikit-learn/XGBoost for query classification
- Embeddings: OpenAI/Cohere/local models (sentence-transformers)
- Reinforcement Learning: Ray RLlib for adaptive routing
- Feature Store: Feast for ML feature management
Scalability Architecture β
Horizontal Scaling
Load Balancer
β
ββββββ΄βββββ¬βββββββββ¬βββββββββ
β Meta-1 β Meta-2 β Meta-N β (Meta-Agent Cluster)
ββββββ¬βββββ΄βββββ¬ββββ΄βββββ¬ββββ
β β β
ββββββΌββββ βββββΌββββ ββββΌβββββ
βVector-1β βGraph-1β βAI-Ag-1β (Specialized Agent Pools)
βVector-2β βGraph-2β βAI-Ag-2β
βVector-Nβ βGraph-Nβ βAI-Ag-Nβ
ββββββββββ βββββββββ βββββββββ
Performance Characteristics (targets) β Cache Hit: <10ms; Cache Miss (vector/graph): 50β200ms; AI agent: 0.5β2s
Resource Requirements (guidance) β Dev: 8GB RAM; Small prod: 32GB RAM; GPU optional for embeddings
Deployment Strategies β
Container Architecture
# Conceptual multi-container setup
services:
meta-agent:
image: noosphere/meta-agent:latest
environment:
- REDIS_URL=redis://cache:6379
- NEO4J_URL=bolt://graph:7687
vector-agent:
image: noosphere/vector-agent:latest
environment:
- WEAVIATE_URL=http://weaviate:8080
cache:
image: redis:7-alpine
volumes:
- ./data/redis:/data
graph:
image: neo4j:5
volumes:
- ./data/neo4j:/data
Configuration Management
- Environment-specific configs for development/staging/production
- Feature flags for experimental routing algorithms
- A/B testing infrastructure for performance optimization
- Monitoring and alerting for system health
Version Control & Rollbacks (Git-native) β
Goal: every data-changing operation in L1 is traceable, diffable, and reversible.
Core principles
- Immutable artifacts, mutable pointers: writes create new artifacts; the active pointer flips atomically after validation.
- Git as the source of truth: human-auditable history with signed commits and tags for releases/checkpoints.
- One command to revert: operators can move the system to any previous ref safely.
Tracked artifacts
- Knowledge Graph snapshots: periodic/export-on-change dumps (Cypher/CSV or JSON-LD) stored with content-addressed names; tagged by Git SHA and human tag (e.g., l1-graph@v2025-09-06).
- Vector index snapshots: read-only index bundles (e.g., FAISS/Weaviate export) published to object storage; manifest maps Git SHA β snapshot URI and schema/version.
- Document corpus/versioned chunks: deterministic chunking; each chunk carries content hash and corpus ref for reproducibility.
- Router configs and policies: routing thresholds, KV policy presets, feature flags; stored alongside code in the repo.
Write path and change-sets
- Any mutation (ingest/update/delete) produces a change-set: nodes/edges added/updated/removed, affected documents, and estimated impacts.
- Auto-commit: change-set serialized to repo (or a dedicated data-repo) with a signed commit message including request_id, author, scope, and safety checks.
- Review gates: risky ops (large fan-out, low confidence) require approval; enforced via branch protection/ACL.
Rollback mechanisms
- Soft rollback (instant): flip active pointers (graph snapshot, vector index, corpus) to a previous ref; new artifacts are kept for later analysis.
- Hard rollback (restore): rehydrate Neo4j/DGraph from snapshot export and reattach indexes from the manifest; validate, then promote.
- MCP admin ops (suggested):
- /admin/version/current β { commit, tags, active:
{graph, vector, corpus}
} - /admin/version/checkout
{ ref }
β switch active pointers with 2-phase validation - /admin/version/restore-index
{ ref }
β force reattach vector index - /admin/version/status β readiness and consistency report
- /admin/version/current β { commit, tags, active:
Consistency & safety
- Two-phase promotion: build new artifacts β validate (schema/consistency/latency) β flip pointer.
- Provenance in results: each returned item includes
{commit, corpus_ref, snapshot_id}
for end-to-end traceability. - KV Policy interplay: pin prevents eviction across versions; evict allowed only when snapshot is superseded and not pinned.
Storage layout (example)
/l1-artifacts/
graph/
8f/8f12c.../graph.jsonld # content-addressed
tags/l1-graph@v2025-09-06 -> 8f12c...
vector/
3a/3a9b.../index.faiss
3a/3a9b.../manifest.json # dims, metric, schema ver
corpus/
54/54aa.../chunks.parquet
manifests/
8f12c.../release.json # {graph, vector, corpus}
Edge cases
- Partial failure: do not flip pointers unless all artifacts validate; auto-roll back.
- Large artifacts: use rsync-in-place/object storage with integrity checks.
- Concurrency: serialize promotions via a single-leader lock; readers always see a consistent tuple of pointers.
Comprehensive Testing & Validation Framework β
Component Testing Architecture β
Meta-Agent Router Testing:
describe('Meta-Agent Router', () => {
describe('Pattern Cache Engine', () => {
test('learns from successful query patterns', async () => {
const successful_pattern = {
query: "React performance optimization",
method: "hybrid",
success_metrics: { relevance: 0.9, user_satisfaction: 0.85 }
};
await patternCache.recordSuccess(successful_pattern);
const similar_query = "React performance best practices";
const recommendation = await patternCache.getMethodRecommendation(similar_query);
expect(recommendation.method).toBe("hybrid");
expect(recommendation.confidence).toBeGreaterThan(0.7);
});
test('adapts routing based on query complexity', async () => {
const simple_query = "what is JavaScript";
const complex_query = "implement distributed consensus with Byzantine fault tolerance";
const simple_routing = await metaAgent.routeQuery(simple_query);
const complex_routing = await metaAgent.routeQuery(complex_query);
expect(simple_routing.method).toBe("vector"); // Simple vector search sufficient
expect(complex_routing.method).toBe("agent"); // Requires AI agent research
expect(complex_routing.agent_type).toBe("researcher");
});
});
describe('Hybrid Search Orchestration', () => {
test('combines vector and graph results effectively', async () => {
const query = "authentication patterns OAuth2 JWT";
const hybrid_results = await metaAgent.hybridSearch({
query,
vector_weight: 0.6,
graph_weight: 0.4,
max_results: 10
});
expect(hybrid_results.fragments.length).toBeLessThanOrEqual(10);
expect(hybrid_results.source_breakdown.vector).toBeGreaterThan(0);
expect(hybrid_results.source_breakdown.graph).toBeGreaterThan(0);
expect(hybrid_results.diversity_score).toBeGreaterThan(0.6);
});
});
});
AI Agent Testing β
Librarian Agent Validation:
describe('AI Librarian Agent', () => {
test('conducts systematic research for complex queries', async () => {
const research_query = "microservices vs monolithic architecture trade-offs";
const research_result = await librarianAgent.conductResearch({
query: research_query,
depth: "comprehensive",
include_counterarguments: true
});
expect(research_result.methodology).toBeDefined();
expect(research_result.findings.length).toBeGreaterThan(3);
expect(research_result.sources.length).toBeGreaterThan(5);
expect(research_result.synthesis_summary).toBeDefined();
// Should include both perspectives
const content = research_result.findings.map(f => f.content).join(" ");
expect(content).toMatch(/(advantage|benefit).*microservices/i);
expect(content).toMatch(/(advantage|benefit).*monolithic/i);
});
test('validates information quality and sources', async () => {
const validation_request = {
content: "React 18 introduced concurrent features for better performance",
sources: ["react.dev", "github.com/facebook/react"],
domain: "frontend_development"
};
const validation_result = await librarianAgent.validateInformation(validation_request);
expect(validation_result.accuracy_score).toBeGreaterThan(0.8);
expect(validation_result.source_credibility).toBeGreaterThan(0.9);
expect(validation_result.temporal_relevance).toBeGreaterThan(0.8);
expect(validation_result.supporting_evidence).toBeDefined();
});
});
Performance Testing β
System Load Testing:
describe('Noosphere Performance Tests', () => {
test('handles concurrent search requests', async () => {
const concurrent_queries = Array.from({ length: 100 }, (_, i) => ({
query: `test query ${i}`,
method: "hybrid",
user_id: `user-${i}`
}));
const start_time = Date.now();
const results = await Promise.allSettled(
concurrent_queries.map(q => noosphere.search(q))
);
const total_time = Date.now() - start_time;
const successful = results.filter(r => r.status === 'fulfilled');
const success_rate = successful.length / results.length;
expect(success_rate).toBeGreaterThan(0.95); // 95% success rate
expect(total_time).toBeLessThan(10000); // 100 queries in < 10 seconds
// Individual query performance
const response_times = successful.map(r =>
(r as PromiseFulfilledResult<any>).value.processing_time_ms
);
const p95_latency = response_times.sort()[Math.floor(response_times.length * 0.95)];
expect(p95_latency).toBeLessThan(800); // P95 < 800ms
});
test('maintains quality under load', async () => {
const quality_queries = [
"implement JWT authentication",
"database indexing strategies",
"React state management patterns",
"distributed systems consistency"
];
const quality_results = await Promise.all(
quality_queries.map(async query => {
const results = await noosphere.search({ query, method: "hybrid" });
return {
query,
quality_score: results.quality_metrics.overall_score,
relevance_score: results.quality_metrics.relevance_score
};
})
);
const avg_quality = quality_results.reduce((sum, r) => sum + r.quality_score, 0) / quality_results.length;
const avg_relevance = quality_results.reduce((sum, r) => sum + r.relevance_score, 0) / quality_results.length;
expect(avg_quality).toBeGreaterThan(0.75);
expect(avg_relevance).toBeGreaterThan(0.8);
});
});
Production Operations Framework β
Knowledge Pipeline Monitoring β
Ingestion & Quality Metrics:
noosphere_operations:
data_pipeline:
ingestion_monitoring:
- name: noosphere_ingestion_rate
type: gauge
labels: [source_type, content_domain]
- name: noosphere_content_quality_score
type: histogram
buckets: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
labels: [source, validation_method]
- name: noosphere_knowledge_freshness_hours
type: gauge
labels: [domain, source_type]
search_performance:
- name: noosphere_search_cache_hit_ratio
type: gauge
labels: [cache_type, query_complexity]
- name: noosphere_agent_utilization
type: gauge
labels: [agent_type, complexity_level]
- name: noosphere_hybrid_search_composition
type: gauge
labels: [vector_ratio, graph_ratio, agent_ratio]
alerts:
- name: NoosphereIngestionStalled
condition: rate(noosphere_ingestion_rate[10m]) < 10
severity: warning
duration: 5m
- name: NoosphereQualityDegradation
condition: avg(noosphere_content_quality_score) < 0.6
severity: critical
duration: 2m
- name: NoosphereAgentOverload
condition: noosphere_agent_utilization > 0.9
severity: warning
duration: 1m
Auto-scaling & Resource Management β
Dynamic Resource Allocation:
class NoosphereResourceManager {
private scaling_policies = {
vector_search: {
scale_up_threshold: { cpu: 0.7, memory: 0.8, query_queue: 50 },
scale_down_threshold: { cpu: 0.3, memory: 0.4, query_queue: 5 },
min_replicas: 2,
max_replicas: 20
},
graph_search: {
scale_up_threshold: { cpu: 0.8, memory: 0.9, query_queue: 20 },
scale_down_threshold: { cpu: 0.2, memory: 0.3, query_queue: 2 },
min_replicas: 1,
max_replicas: 10
},
ai_agents: {
scale_up_threshold: { cpu: 0.6, utilization: 0.8, queue_depth: 10 },
scale_down_threshold: { cpu: 0.2, utilization: 0.3, queue_depth: 1 },
min_replicas: 1,
max_replicas: 15
}
};
async evaluateScalingNeeds(): Promise<ScalingDecision[]> {
const current_metrics = await this.getSystemMetrics();
const decisions: ScalingDecision[] = [];
for (const [component, policy] of Object.entries(this.scaling_policies)) {
const component_metrics = current_metrics[component];
if (this.shouldScaleUp(component_metrics, policy.scale_up_threshold)) {
decisions.push({
component,
action: 'scale_up',
target_replicas: Math.min(
component_metrics.current_replicas + this.calculateScaleUpDelta(component_metrics),
policy.max_replicas
),
reason: this.getScalingReason(component_metrics, 'up')
});
} else if (this.shouldScaleDown(component_metrics, policy.scale_down_threshold)) {
decisions.push({
component,
action: 'scale_down',
target_replicas: Math.max(
component_metrics.current_replicas - 1,
policy.min_replicas
),
reason: this.getScalingReason(component_metrics, 'down')
});
}
}
return decisions;
}
}
Security & Privacy Implementation β
Enhanced Security Framework:
class NoosphereSecurityManager {
private security_policies = {
data_classification: {
public: { encryption: false, access_logging: false },
internal: { encryption: true, access_logging: true },
sensitive: { encryption: true, access_logging: true, approval_required: true },
pii: { encryption: true, access_logging: true, anonymization: true }
},
query_validation: {
max_query_length: 10000,
blocked_patterns: [/\bDROP\b/i, /\bDELETE\b/i, /\bEXEC\b/i],
rate_limits: { per_user: 1000, per_minute: 10000 },
content_filters: ['explicit_content', 'harmful_instructions']
}
};
async validateKnowledgeQuery(
query: KnowledgeQuery,
user_context: UserContext
): Promise<SecurityValidationResult> {
const validations = await Promise.all([
this.validateQuerySyntax(query),
this.checkContentFilters(query),
this.validateUserPermissions(user_context),
this.checkRateLimits(user_context.user_id),
this.scanForSecurityThreats(query)
]);
const security_violations = validations.filter(v => !v.passed);
if (security_violations.length > 0) {
await this.logSecurityIncident({
type: 'knowledge_query_violation',
user_id: user_context.user_id,
query_hash: this.hashQuery(query),
violations: security_violations,
timestamp: new Date().toISOString()
});
return {
approved: false,
violations: security_violations,
sanitized_query: this.sanitizeQuery(query, security_violations)
};
}
return { approved: true };
}
private async anonymizeSensitiveContent(content: string): Promise<string> {
// PII detection and anonymization
const pii_patterns = {
email: /\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b/g,
phone: /\b\d{3}-\d{3}-\d{4}\b/g,
ssn: /\b\d{3}-\d{2}-\d{4}\b/g,
credit_card: /\b\d{4}[\s-]?\d{4}[\s-]?\d{4}[\s-]?\d{4}\b/g
};
let anonymized = content;
for (const [type, pattern] of Object.entries(pii_patterns)) {
anonymized = anonymized.replace(pattern, `[${type.toUpperCase()}_REDACTED]`);
}
return anonymized;
}
}
Deployment & Infrastructure β
Production Deployment Configuration:
# Noosphere L1 production deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: noosphere-meta-agent
namespace: mnemoverse-l1
spec:
replicas: 3
selector:
matchLabels:
app: noosphere-meta-agent
template:
metadata:
labels:
app: noosphere-meta-agent
spec:
containers:
- name: meta-agent
image: mnemoverse/noosphere-meta-agent:v0.1.0
ports:
- containerPort: 8080
env:
- name: PATTERN_CACHE_SIZE
value: "10000"
- name: VECTOR_INDEX_PATH
value: "/data/vector-index"
- name: GRAPH_DB_URL
value: "neo4j://neo4j-service:7687"
resources:
requests:
cpu: 1
memory: 2Gi
limits:
cpu: 4
memory: 8Gi
volumeMounts:
- name: vector-data
mountPath: /data
volumes:
- name: vector-data
persistentVolumeClaim:
claimName: noosphere-vector-pvc
---
apiVersion: v1
kind: Service
metadata:
name: noosphere-service
spec:
selector:
app: noosphere-meta-agent
ports:
- port: 80
targetPort: 8080
type: ClusterIP
Implementation Roadmap β
Phase 1: Core Infrastructure (v0.1) - 5 weeks β
Week 1-2: Foundation Components
- [ ] MCP protocol implementation and client interface
- [ ] Vector search engine with embedding generation
- [ ] Neo4j knowledge graph setup and basic schemas
- [ ] Content ingestion pipeline with quality validation
Week 3-4: Intelligence Layer
- [ ] Meta-agent router with pattern cache engine
- [ ] AI Librarian agent with research capabilities
- [ ] Hybrid search orchestration (vector + graph + agent)
- [ ] Feedback collection and continuous learning system
Week 5: Integration & Testing
- [ ] End-to-end search workflow integration
- [ ] Performance optimization and caching
- [ ] Comprehensive testing framework
- [ ] Basic monitoring and alerting
Phase 2: Production Hardening (v0.2) - 3 weeks β
Week 1: Performance & Reliability
- [ ] Advanced caching strategies (pattern cache + search cache)
- [ ] Auto-scaling and load balancing implementation
- [ ] Comprehensive monitoring dashboard
- [ ] Performance benchmarking and optimization
Week 2-3: Security & Operations
- [ ] Security framework with PII detection
- [ ] Privacy-preserving techniques
- [ ] Production deployment automation
- [ ] Disaster recovery procedures
Phase 3: Advanced Intelligence (v0.3) - 4 weeks β
Week 1-2: Enhanced AI Capabilities
- [ ] Advanced AI agents (Researcher, Validator)
- [ ] Machine learning optimization for routing
- [ ] Personalized knowledge recommendations
- [ ] Cross-domain knowledge synthesis
Week 3-4: Knowledge Evolution
- [ ] Temporal knowledge tracking and versioning
- [ ] Knowledge graph evolution and learning
- [ ] Advanced quality metrics and validation
- [ ] Multi-modal knowledge support
Success Criteria β
Performance Targets:
- Search latency P95 < 500ms (vector), < 800ms (hybrid)
- System availability > 99.9%
- Knowledge ingestion rate > 1000 documents/hour
- Cache hit ratio > 75%
Quality Metrics:
- Search relevance accuracy > 85%
- Knowledge quality score > 0.8
- Source diversity index > 0.6
- User satisfaction rating > 4.0/5.0
Operational Excellence:
- Security incident rate < 0.01%
- Data consistency > 99.5%
- MTTR < 10 minutes for critical issues
- Automated test coverage > 90%
References & Further Reading β
Knowledge Management & Information Retrieval:
- Vector Search: Pinecone (2023). "The Vector Database Primer" - Modern embedding and retrieval techniques
- Hybrid Search: Karpukhin, V. et al. (2020). "Dense Passage Retrieval for Open-Domain Question Answering" EMNLP
- Knowledge Graphs: Hogan, A. et al. (2021). "Knowledge Graphs" ACM Computing Surveys, 54(4), 1-37
- Semantic Search: Reimers, N. & Gurevych, I. (2019). "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks" EMNLP
Multi-Agent Systems:
- Swarm Intelligence: Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). "Swarm Intelligence: From Natural to Artificial Systems" Oxford University Press
- Multi-Agent Coordination: Shoham, Y. & Leyton-Brown, K. (2008). "Multi-Agent Systems: Algorithmic, Game-Theoretic, and Logical Foundations" Cambridge University Press
- Agent Communication: FIPA (2002). "Agent Communication Language Specifications" Foundation for Intelligent Physical Agents
Machine Learning & Optimization:
- Reinforcement Learning: Sutton, R.S. & Barto, A.G. (2018). "Reinforcement Learning: An Introduction" (2nd Edition) MIT Press
- Pattern Recognition: Bishop, C.M. (2006). "Pattern Recognition and Machine Learning" Springer
- Caching Algorithms: Podlipnig, S. & BΓΆszΓΆrmenyi, L. (2003). "A survey of web cache replacement strategies" ACM Computing Surveys, 35(4), 374-398
System Architecture:
- Distributed Systems: Kleppmann, M. (2017). "Designing Data-Intensive Applications" O'Reilly Media
- Microservices: Newman, S. (2021). "Building Microservices" (2nd Edition) O'Reilly Media
- Event-Driven Architecture: Hohpe, G. & Woolf, B. (2003). "Enterprise Integration Patterns" Addison-Wesley
Internal References:
- System Overview:
../README.md
β Complete architecture overview - Orchestration Integration:
../orchestration/README.md
β L2 orchestration layer - Contracts:
../contracts/README.md
β Inter-layer communication protocols - Evaluation Framework:
../evaluation/README.md
β Quality assessment methodologies - Architecture Standards:
/ARCHITECTURE_DOCUMENTATION_STANDARDS.md
β Documentation requirements
Related Component Documentation β
Core Components: β
- Main Overview:
./README.md
β L1 system overview and quick navigation - Search Abstraction:
./search-abstraction.md
β Unified search interface and behavior - Vector Search:
./vector-search.md
β Embedding models and indexing strategies - Knowledge Graph:
./knowledge-graph.md
β Entity schemas and graph traversal - AI Librarian:
./ai-librarian.md
β Agent roles and research capabilities
Integration & Advanced Features: β
- MCP Protocol:
./mcp-integration.md
β Model Context Protocol specifications - Hyperbolic Space:
./hyperbolic-space.md
β Mathematical foundations and geometry - Configuration:
./config.md
β System configuration and deployment settings
Status: Technical architecture complete β Implementation ready β Production target (v0.2)
Next Priority: Phase 1 implementation β MCP protocol, vector search engine, knowledge graph, and meta-agent router with pattern cache.