Skip to content

🧠 Cognitive Engine Specification (L4 Extension)

Future Extension: This document specifies the advanced cognitive processing capabilities planned for Experience Layer v0.3+. The Cognitive Engine will transform L4 from simple experience capture into an intelligent learning and adaptation system.

Executive Summary

The Cognitive Engine represents the "thinking" layer of Mnemoverse's experience system. While the foundation L4 captures and retrieves experience events, the Cognitive Engine adds:

  • Pattern Recognition: Identifying recurring behavioral and problem-solving patterns
  • Intelligent Summarization: Context-aware, adaptive summaries of complex experiences
  • Cognitive State Management: Understanding and tracking user cognitive load and learning state
  • Meta-learning: Learning about learning to continuously improve system effectiveness

Cognitive Architecture Philosophy

Inspiration from Cognitive Science

The Cognitive Engine implements principles from:

  • Dual Process Theory: Fast (System 1) and slow (System 2) thinking
  • Working Memory Models: Baddeley's multi-component working memory
  • Metacognition Theory: Thinking about thinking processes
  • Pattern Recognition: Chunking and schema formation in expertise development

Design Principles

  1. Cognitive Realism: Mirror human cognitive processes where beneficial
  2. Adaptive Intelligence: Adjust processing based on context and load
  3. Privacy Preservation: All cognitive processing respects user privacy boundaries
  4. Continuous Learning: Self-improvement through interaction feedback
  5. Explainable Cognition: Users can understand why the system behaves as it does

Core Components Architecture

1. Pattern Recognition Engine

Purpose: Identify, classify, and learn from recurring patterns in user behavior and problem-solving approaches.

typescript
interface PatternRecognitionEngine {
  // Behavioral pattern detection
  detectBehavioralPatterns(events: ExperienceEvent[]): BehavioralPattern[];
  
  // Problem-solving strategy recognition  
  identifySolutionPatterns(interactions: ProblemSolvingSession[]): SolutionPattern[];
  
  // Learning pattern analysis
  analyzeLearningPatterns(sessions: LearningSession[]): LearningPattern[];
  
  // Communication pattern detection
  detectCommunicationPatterns(conversations: Conversation[]): CommunicationPattern[];
}

interface BehavioralPattern {
  id: string;
  type: 'exploration' | 'focused_work' | 'debugging' | 'learning' | 'creative';
  triggers: PatternTrigger[];
  sequence: ActionSequence[];
  outcomes: PatternOutcome[];
  frequency: number;
  confidence: number;
  user_segments: string[]; // Which users exhibit this pattern
}

interface SolutionPattern {
  id: string;
  problem_type: string;
  solution_strategy: StrategicApproach;
  effectiveness_score: number;
  conditions: SuccessCondition[];
  alternatives: AlternativeApproach[];
  learning_curve: LearningCurveData;
}

Key Algorithms:

typescript
class PatternRecognitionAlgorithms {
  // Temporal pattern mining using sliding windows
  detectTemporalPatterns(events: TimestampedEvent[], window_size: number): TemporalPattern[] {
    const windows = this.createSlidingWindows(events, window_size);
    return windows.flatMap(window => this.extractPatternsFromWindow(window));
  }
  
  // Sequential pattern mining for user workflows
  mineSequentialPatterns(sessions: UserSession[], min_support: number): SequentialPattern[] {
    const sequences = sessions.map(s => s.action_sequence);
    return this.applySequentialMining(sequences, min_support);
  }
  
  // Clustering-based pattern discovery
  discoverPatternClusters(behaviors: UserBehavior[]): PatternCluster[] {
    const features = behaviors.map(b => this.extractFeatures(b));
    const clusters = this.performClustering(features, { algorithm: 'hierarchical' });
    return clusters.map(cluster => this.interpretClusterAsPattern(cluster));
  }
}

2. Intelligent Summarization System

Purpose: Generate context-aware, adaptive summaries that capture the essence of complex experiences while respecting cognitive load constraints.

typescript
interface IntelligentSummarizer {
  // Multi-level summarization with different granularities
  generateSummary(
    content: ExperienceContent,
    context: SummarizationContext
  ): IntelligentSummary;
  
  // Adaptive summarization based on user expertise
  adaptToUserLevel(
    summary: IntelligentSummary,
    user_profile: UserExpertiseProfile
  ): AdaptedSummary;
  
  // Progressive summarization (reveal more detail on demand)
  createProgressiveSummary(
    detailed_content: DetailedExperience
  ): ProgressiveSummary;
  
  // Cross-experience synthesis
  synthesizeExperiences(
    related_experiences: ExperienceGroup
  ): SynthesizedInsight;
}

interface IntelligentSummary {
  core_insight: string;           // 1 sentence, key takeaway
  context_summary: string;        // 2-3 sentences, situation
  process_summary: string;        // 2-3 sentences, what happened
  outcome_summary: string;        // 1-2 sentences, results
  lessons_learned: string[];      // Key insights for future
  related_patterns: PatternRef[]; // Links to recognized patterns
  cognitive_load: CognitiveLoadEstimate;
}

interface SummarizationContext {
  target_audience: UserExpertiseLevel;
  cognitive_budget: CognitiveBudget;
  summarization_goal: 'quick_reference' | 'learning' | 'decision_making' | 'sharing';
  domain_knowledge: DomainKnowledgeLevel;
  time_constraints: TimeConstraints;
}

Advanced Summarization Techniques:

typescript
class AdvancedSummarizationEngine {
  // Hierarchical summarization with concept graphs
  generateHierarchicalSummary(
    experience: ComplexExperience,
    depth_levels: number
  ): HierarchicalSummary {
    const concept_graph = this.buildConceptGraph(experience);
    const hierarchy = this.extractConceptHierarchy(concept_graph, depth_levels);
    return this.summarizeByHierarchy(hierarchy);
  }
  
  // Attention-based summarization focusing on user interests
  generateAttentionBasedSummary(
    experience: ExperienceData,
    user_attention_profile: AttentionProfile
  ): AttentionBasedSummary {
    const attention_weights = this.calculateAttentionWeights(
      experience, 
      user_attention_profile
    );
    return this.weightedSummarization(experience, attention_weights);
  }
  
  // Comparative summarization (what's different/similar)
  generateComparativeSummary(
    current_experience: ExperienceData,
    reference_experiences: ExperienceData[]
  ): ComparativeSummary {
    const similarities = this.findSimilarities(current_experience, reference_experiences);
    const differences = this.findDifferences(current_experience, reference_experiences);
    return this.buildComparativeNarrative(similarities, differences);
  }
}

3. Cognitive State Machine

Purpose: Model and track the user's cognitive state throughout interactions to provide appropriate support and adaptation.

typescript
interface CognitiveStateMachine {
  // State tracking and updates
  updateCognitiveState(
    current_state: CognitiveState,
    new_observations: CognitiveObservation[]
  ): CognitiveState;
  
  // Cognitive load assessment
  assessCognitiveLoad(
    user_interactions: UserInteraction[]
  ): CognitiveLoadMetrics;
  
  // Learning state inference
  inferLearningState(
    learning_interactions: LearningInteraction[]
  ): LearningState;
  
  // Attention state modeling
  modelAttentionState(
    attention_indicators: AttentionIndicator[]
  ): AttentionState;
}

interface CognitiveState {
  // Working memory state
  working_memory: {
    capacity_utilization: number;    // 0.0-1.0
    active_concepts: ConceptNode[];
    cognitive_load: CognitiveLoadLevel;
  };
  
  // Learning state
  learning_state: {
    current_stage: LearningStage;    // exploration, practice, mastery
    knowledge_gaps: KnowledgeGap[];
    learning_momentum: number;       // learning velocity
    confidence_level: number;        // 0.0-1.0
  };
  
  // Attention state
  attention_state: {
    focus_level: number;            // 0.0-1.0
    distraction_indicators: DistractionIndicator[];
    attention_span_remaining: number; // estimated minutes
    context_switching_cost: number;   // cognitive switching penalty
  };
  
  // Problem-solving state
  problem_solving_state: {
    current_strategy: ProblemSolvingStrategy;
    strategy_effectiveness: number;
    stuck_indicators: StuckIndicator[];
    breakthrough_probability: number;
  };
}

Cognitive State Inference Algorithms:

typescript
class CognitiveStateInference {
  // Bayesian inference for cognitive load
  inferCognitiveLoad(
    interaction_patterns: InteractionPattern[],
    performance_metrics: PerformanceMetric[]
  ): CognitiveLoadDistribution {
    const prior = this.getCognitiveLoadPrior();
    const likelihood = this.calculateLikelihood(interaction_patterns, performance_metrics);
    return this.bayesianUpdate(prior, likelihood);
  }
  
  // Hidden Markov Model for learning state transitions
  trackLearningStateTransitions(
    learning_observations: LearningObservation[]
  ): LearningStateSequence {
    const hmm = this.buildLearningStateHMM();
    return hmm.viterbi(learning_observations);
  }
  
  // Multi-modal attention modeling
  modelAttentionFromMultipleSignals(
    signals: {
      response_times: number[],
      error_rates: number[],
      question_complexity: number[],
      context_switches: ContextSwitch[]
    }
  ): AttentionModel {
    const attention_features = this.extractAttentionFeatures(signals);
    return this.fusionModel.predict(attention_features);
  }
}

4. Meta-learning Framework

Purpose: Learn about learning processes to continuously improve the system's ability to support user growth and adaptation.

typescript
interface MetaLearningFramework {
  // Learning effectiveness analysis
  analyzeLearningEffectiveness(
    learning_trajectories: LearningTrajectory[]
  ): LearningEffectivenessInsights;
  
  // Adaptation strategy optimization
  optimizeAdaptationStrategies(
    user_profiles: UserProfile[],
    adaptation_outcomes: AdaptationOutcome[]
  ): OptimalAdaptationStrategy[];
  
  // Transfer learning discovery
  discoverTransferOpportunities(
    domain_experiences: DomainExperience[]
  ): TransferOpportunity[];
  
  // Continuous model improvement
  improveModelsFromFeedback(
    user_feedback: UserFeedback[],
    model_predictions: ModelPrediction[]
  ): ModelImprovementPlan;
}

interface LearningEffectivenessInsights {
  effective_learning_patterns: LearningPattern[];
  ineffective_patterns: LearningPattern[];
  optimal_cognitive_load_levels: CognitiveLoadLevel[];
  personalization_factors: PersonalizationFactor[];
  transfer_learning_opportunities: TransferOpportunity[];
}

interface AdaptationOutcome {
  adaptation_strategy: AdaptationStrategy;
  user_response: UserResponse;
  learning_impact: LearningImpact;
  satisfaction_change: number;
  performance_change: PerformanceChange;
}

Meta-learning Algorithms:

typescript
class MetaLearningAlgorithms {
  // Few-shot learning for rapid adaptation to new users
  adaptToNewUser(
    new_user_initial_interactions: UserInteraction[],
    similar_user_profiles: UserProfile[]
  ): UserAdaptationStrategy {
    const similarity_scores = this.calculateUserSimilarity(
      new_user_initial_interactions, 
      similar_user_profiles
    );
    const relevant_profiles = this.selectMostSimilar(similarity_scores, k: 5);
    return this.synthesizeAdaptationStrategy(relevant_profiles);
  }
  
  // Multi-task learning across different cognitive tasks
  learnAcrossCognitiveTasks(
    task_experiences: Map<CognitiveTaskType, TaskExperience[]>
  ): SharedCognitiveModel {
    const shared_representations = this.extractSharedRepresentations(task_experiences);
    const task_specific_components = this.extractTaskSpecificComponents(task_experiences);
    return this.buildMultiTaskModel(shared_representations, task_specific_components);
  }
  
  // Continual learning with catastrophic forgetting prevention
  updateModelsContinually(
    new_experiences: ExperienceData[],
    existing_model: CognitiveModel
  ): UpdatedCognitiveModel {
    const importance_weights = this.calculateParameterImportance(existing_model);
    const regularization_terms = this.buildRegularizationTerms(importance_weights);
    return this.trainWithElasticWeightConsolidation(new_experiences, regularization_terms);
  }
}

Integration with Foundation L4

Data Flow Integration

typescript
interface CognitiveEngineIntegration {
  // Enhanced experience processing with cognitive analysis
  processExperienceWithCognition(
    experience_event: ExperienceEvent
  ): EnhancedExperienceUnit {
    const basic_unit = this.foundationL4.createExperienceUnit(experience_event);
    
    const cognitive_analysis = {
      patterns: this.patternEngine.recognizePatterns([experience_event]),
      cognitive_state: this.stateEngine.updateCognitiveState(experience_event),
      learning_insights: this.metaLearner.extractLearningInsights(experience_event),
      intelligent_summary: this.summarizer.generateSummary(experience_event)
    };
    
    return {
      ...basic_unit,
      cognitive_analysis
    };
  }
  
  // Cognitive-enhanced retrieval
  retrieveWithCognition(
    query: ExperienceQuery,
    user_cognitive_state: CognitiveState
  ): CognitivelyEnhancedResults {
    const base_results = this.foundationL4.retrieve(query);
    
    const enhanced_results = base_results.map(result => ({
      ...result,
      cognitive_relevance: this.calculateCognitiveRelevance(result, user_cognitive_state),
      adaptation_suggestions: this.generateAdaptationSuggestions(result, user_cognitive_state)
    }));
    
    return this.reRankByCognitiveRelevance(enhanced_results);
  }
}

API Extensions

typescript
// Extended API for cognitive functionality
interface CognitiveExperienceAPI extends BaseExperienceAPI {
  // Cognitive state query
  GET('/api/v1/experience/cognitive-state/{user_id}'): CognitiveStateResponse;
  
  // Pattern analysis
  POST('/api/v1/experience/analyze-patterns'): PatternAnalysisResponse;
  
  // Intelligent summarization
  POST('/api/v1/experience/intelligent-summary'): IntelligentSummaryResponse;
  
  // Learning insights
  GET('/api/v1/experience/learning-insights/{user_id}'): LearningInsightsResponse;
  
  // Adaptation recommendations  
  POST('/api/v1/experience/adaptation-recommendations'): AdaptationRecommendationsResponse;
}

Performance Characteristics

Computational Requirements

Pattern Recognition Engine:

  • Memory: 2-4 GB for pattern models and caches
  • CPU: Medium intensity, batch processing friendly
  • Latency: 50-200ms for pattern recognition per experience
  • Throughput: 1000+ pattern analyses per minute

Intelligent Summarization:

  • Memory: 1-2 GB for language models and context
  • CPU: High intensity, GPU acceleration beneficial
  • Latency: 100-500ms for summary generation
  • Throughput: 500+ summaries per minute

Cognitive State Machine:

  • Memory: 512 MB - 1 GB for state models
  • CPU: Low-medium intensity, real-time capable
  • Latency: 10-50ms for state updates
  • Throughput: 10,000+ state updates per minute

Meta-learning Framework:

  • Memory: 4-8 GB for learning models and data
  • CPU: High intensity, benefits from distributed processing
  • Latency: 1-10 seconds for model updates
  • Throughput: Background processing, not latency-critical

Scaling Considerations

yaml
cognitive_engine_scaling:
  pattern_recognition:
    horizontal_scaling: true
    stateless_processing: true
    batch_friendly: true
    
  summarization:
    gpu_acceleration: recommended
    model_parallelism: supported
    caching_strategy: aggressive
    
  cognitive_state:
    real_time_requirements: true
    in_memory_processing: preferred
    state_persistence: required
    
  meta_learning:
    offline_processing: acceptable
    distributed_training: beneficial
    incremental_updates: required

Privacy and Security Considerations

Cognitive Privacy Framework

typescript
interface CognitivePrivacyFramework {
  // Privacy-preserving pattern recognition
  recognizePatternsWithPrivacy(
    experiences: ExperienceEvent[],
    privacy_level: PrivacyLevel
  ): PrivacyPreservingPatterns;
  
  // Differential privacy for cognitive insights
  generateInsightsWithDifferentialPrivacy(
    user_data: UserCognitiveData,
    epsilon: number
  ): PrivateInsights;
  
  // Federated learning for meta-learning
  performFederatedMetaLearning(
    local_models: LocalCognitiveModel[]
  ): GlobalCognitiveModel;
}

Security Measures

  • Cognitive Data Isolation: User cognitive states stored separately from identifiable information
  • Pattern Anonymization: Patterns learned in anonymized form where possible
  • Secure Multi-party Computation: For cross-user learning without data sharing
  • Homomorphic Encryption: For privacy-preserving cognitive computations

Implementation Timeline

Phase 1: Foundation Integration (v0.3) - 8 weeks

Weeks 1-2: Pattern Recognition MVP

  • Basic behavioral pattern detection
  • Simple solution pattern recognition
  • Pattern storage and retrieval

Weeks 3-4: Basic Cognitive State Tracking

  • Working memory load estimation
  • Basic learning state inference
  • Attention state modeling

Weeks 5-6: Intelligent Summarization MVP

  • Context-aware summarization
  • User-level adaptation
  • Progressive summary generation

Weeks 7-8: Integration and Testing

  • Foundation L4 integration
  • Performance optimization
  • Privacy framework implementation

Phase 2: Advanced Capabilities (v0.4) - 10 weeks

Weeks 1-3: Advanced Pattern Recognition

  • Temporal pattern mining
  • Cross-session pattern synthesis
  • Pattern clustering and classification

Weeks 4-6: Sophisticated Cognitive Modeling

  • Multi-modal cognitive state inference
  • Cognitive load prediction
  • Learning trajectory modeling

Weeks 7-8: Meta-learning Framework

  • Learning effectiveness analysis
  • Adaptation strategy optimization
  • Transfer learning discovery

Weeks 9-10: Production Hardening

  • Performance optimization
  • Comprehensive testing
  • Monitoring and observability

Phase 3: Research Integration (v0.5) - 12 weeks

Weeks 1-4: Advanced Meta-learning

  • Few-shot learning for user adaptation
  • Multi-task learning across cognitive tasks
  • Continual learning with forgetting prevention

Weeks 5-8: Cognitive Personalization

  • Individual cognitive model development
  • Personalized adaptation strategies
  • Dynamic cognitive load management

Weeks 9-12: Research Extensions

  • Novel cognitive architecture exploration
  • Academic collaboration integration
  • Publication and knowledge sharing

Success Metrics

Cognitive Engine Performance

  • Pattern Recognition Accuracy: > 85% for common behavioral patterns
  • Summarization Quality: > 0.9 quality score from user evaluations
  • Cognitive State Accuracy: > 80% accuracy in cognitive load prediction
  • Meta-learning Effectiveness: > 30% improvement in adaptation speed

User Experience Impact

  • Learning Acceleration: 40% faster skill acquisition with cognitive support
  • Cognitive Load Reduction: 25% reduction in reported cognitive fatigue
  • Personalization Satisfaction: > 4.3/5.0 rating for personalized experiences
  • System Comprehensibility: > 80% of users understand cognitive adaptations

System Performance

  • Real-time Responsiveness: Cognitive state updates < 50ms
  • Batch Processing Efficiency: Pattern recognition at 1000+ analyses/minute
  • Memory Efficiency: < 8GB total memory usage for full cognitive engine
  • Privacy Preservation: 0 privacy incidents with cognitive data

Research Foundations

Academic References

Cognitive Science:

  • Working Memory: Baddeley, A. (2012). "Working Memory: Theories, Models, and Controversies" Annual Review of Psychology
  • Metacognition: Flavell, J.H. (1976). "Metacognitive aspects of problem solving" The Nature of Intelligence
  • Pattern Recognition: Chase, W.G. & Simon, H.A. (1973). "Perception in chess" Cognitive Psychology
  • Dual Process Theory: Kahneman, D. (2011). "Thinking, Fast and Slow" Farrar, Straus and Giroux

Machine Learning:

  • Meta-learning: Finn, C. et al. (2017). "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks" ICML
  • Continual Learning: Kirkpatrick, J. et al. (2017). "Overcoming catastrophic forgetting in neural networks" PNAS
  • Few-shot Learning: Vinyals, O. et al. (2016). "Matching Networks for One Shot Learning" NIPS

Human-Computer Interaction:

  • Cognitive Load Theory: Sweller, J. (1988). "Cognitive load during problem solving: Effects on learning" Cognitive Science
  • Adaptive Interfaces: Jameson, A. (2003). "Adaptive interfaces and agents" The Human-Computer Interaction Handbook

Status: Specification complete 🔮 → Research foundation established → Implementation planning ready

Next Steps: Begin Phase 1 implementation planning with focus on pattern recognition MVP and basic cognitive state tracking integration with foundation L4.