Orchestration Metrics & Monitoring β
Comprehensive observability framework for orchestration layer components with metrics collection, alerting, and performance analysis.
Overview β
Monitoring Philosophy β
- Proactive Detection: Catch issues before they impact users
- Performance Optimization: Continuous improvement through data
- Resource Management: Track costs and optimize budgets
- Quality Assurance: Monitor output quality and user satisfaction
Monitoring Stack β
text
Metrics Collection β Time Series DB β Alerting β Dashboards
β β β β
Components Prometheus AlertManager Grafana
Events InfluxDB PagerDuty Custom
Logging DataDog Slack Mobile
Core Metrics (v0) β
Request-Level Metrics β
typescript
interface RequestMetrics {
// Request identification
request_id: string;
user_id: string;
timestamp: Date;
// CEO metrics
ceo_intent_parsing_ms: number;
ceo_budget_allocation_ms: number;
ceo_total_ms: number;
// ACS metrics
acs_provider_scoring_ms: number;
acs_provider_selection_ms: number;
acs_execution_ms: number;
acs_total_ms: number;
// Resource utilization
used_tokens: number;
total_cost_cents: number;
max_budget_cents: number;
budget_utilization_ratio: number; // 0.0-1.0
// Quality metrics
quality_achieved: number; // 0.0-1.0
quality_target: number; // 0.0-1.0
quality_gap: number; // target - achieved
// Provider metrics
providers_attempted: string[];
providers_succeeded: string[];
providers_failed: string[];
provider_fallback_count: number;
// Coverage metrics (v0 compatibility)
coverage_entities: number; // ratio of covered entities (0..1)
// Error tracking
errors: ErrorMetric[];
warnings: WarningMetric[];
}
interface ErrorMetric {
component: 'ceo' | 'acs' | 'provider' | 'system';
error_type: string;
error_message: string;
error_code?: string;
recoverable: boolean;
timestamp: Date;
}
interface WarningMetric {
component: 'ceo' | 'acs' | 'provider' | 'system';
warning_type: string;
warning_message: string;
impact_level: 'low' | 'medium' | 'high';
timestamp: Date;
}
System-Level Metrics β
typescript
interface SystemMetrics {
// Performance metrics
requests_per_second: number;
avg_response_time_ms: number;
p50_response_time_ms: number;
p95_response_time_ms: number;
p99_response_time_ms: number;
// Reliability metrics
success_rate: number; // 0.0-1.0
error_rate: number; // 0.0-1.0
timeout_rate: number; // 0.0-1.0
provider_failure_rate: number; // 0.0-1.0
// Resource metrics
cpu_utilization: number; // 0.0-1.0
memory_utilization: number; // 0.0-1.0
disk_usage: number; // bytes
network_io: number; // bytes/sec
// Cost metrics
total_cost_per_hour: number; // cents
cost_per_request: number; // cents
cost_trend_24h: number; // percent change
budget_burn_rate: number; // cents/hour
// Provider health
provider_health_scores: Record<string, number>; // provider_id -> health (0.0-1.0)
provider_response_times: Record<string, number>; // provider_id -> avg_ms
provider_success_rates: Record<string, number>; // provider_id -> success_rate
}
Metrics Collection Implementation β
Metrics Collector Service β
typescript
// services/metrics-collector.ts
import { EventEmitter } from 'events';
export class MetricsCollector extends EventEmitter {
private metrics: Map<string, any[]> = new Map();
private systemMetrics: SystemMetrics = this.initializeSystemMetrics();
private metricsBuffer: RequestMetrics[] = [];
private flushInterval: NodeJS.Timer;
constructor(private config: MetricsConfig) {
super();
this.startMetricsFlush();
this.startSystemMetricsCollection();
}
// Request-level metrics
recordRequestStart(requestId: string, userId: string): void {
const metric: Partial<RequestMetrics> = {
request_id: requestId,
user_id: userId,
timestamp: new Date(),
errors: [],
warnings: []
};
this.metrics.set(requestId, metric);
this.emit('request_started', metric);
}
recordCEOMetrics(requestId: string, ceoMetrics: {
intent_parsing_ms: number;
budget_allocation_ms: number;
total_ms: number;
}): void {
const metric = this.metrics.get(requestId);
if (metric) {
Object.assign(metric, {
ceo_intent_parsing_ms: ceoMetrics.intent_parsing_ms,
ceo_budget_allocation_ms: ceoMetrics.budget_allocation_ms,
ceo_total_ms: ceoMetrics.total_ms
});
}
}
recordACSMetrics(requestId: string, acsMetrics: {
provider_scoring_ms: number;
provider_selection_ms: number;
execution_ms: number;
total_ms: number;
providers_attempted: string[];
providers_succeeded: string[];
providers_failed: string[];
total_cost_cents: number;
quality_achieved: number;
}): void {
const metric = this.metrics.get(requestId);
if (metric) {
Object.assign(metric, {
acs_provider_scoring_ms: acsMetrics.provider_scoring_ms,
acs_provider_selection_ms: acsMetrics.provider_selection_ms,
acs_execution_ms: acsMetrics.execution_ms,
acs_total_ms: acsMetrics.total_ms,
providers_attempted: acsMetrics.providers_attempted,
providers_succeeded: acsMetrics.providers_succeeded,
providers_failed: acsMetrics.providers_failed,
total_cost_cents: acsMetrics.total_cost_cents,
quality_achieved: acsMetrics.quality_achieved,
provider_fallback_count: acsMetrics.providers_attempted.length - 1
});
}
}
recordError(requestId: string, error: ErrorMetric): void {
const metric = this.metrics.get(requestId);
if (metric) {
metric.errors.push(error);
this.emit('error_recorded', { requestId, error });
}
}
recordWarning(requestId: string, warning: WarningMetric): void {
const metric = this.metrics.get(requestId);
if (metric) {
metric.warnings.push(warning);
this.emit('warning_recorded', { requestId, warning });
}
}
completeRequest(requestId: string): void {
const metric = this.metrics.get(requestId) as RequestMetrics;
if (metric) {
// Finalize metrics
metric.budget_utilization_ratio = metric.total_cost_cents / (metric.max_budget_cents || 1);
metric.quality_gap = (metric.quality_target || 0.8) - (metric.quality_achieved || 0);
// Add to buffer for batch processing
this.metricsBuffer.push(metric);
// Update system metrics
this.updateSystemMetrics(metric);
// Clean up
this.metrics.delete(requestId);
this.emit('request_completed', metric);
}
}
private updateSystemMetrics(requestMetric: RequestMetrics): void {
// Update rolling averages and counters
const totalTime = (requestMetric.ceo_total_ms || 0) + (requestMetric.acs_total_ms || 0);
// Simple moving average (can be enhanced with proper time-series calculations)
this.systemMetrics.avg_response_time_ms = (this.systemMetrics.avg_response_time_ms + totalTime) / 2;
// Update success/error rates
const hasErrors = requestMetric.errors.length > 0;
this.systemMetrics.error_rate = this.updateRate(this.systemMetrics.error_rate, hasErrors);
this.systemMetrics.success_rate = 1.0 - this.systemMetrics.error_rate;
// Update cost metrics
this.systemMetrics.cost_per_request = (this.systemMetrics.cost_per_request + requestMetric.total_cost_cents) / 2;
}
private updateRate(currentRate: number, isEvent: boolean): number {
const alpha = 0.1; // Exponential moving average factor
return alpha * (isEvent ? 1.0 : 0.0) + (1 - alpha) * currentRate;
}
private startMetricsFlush(): void {
this.flushInterval = setInterval(() => {
if (this.metricsBuffer.length > 0) {
this.flushMetrics();
}
}, this.config.flush_interval_ms);
}
private flushMetrics(): void {
const batch = [...this.metricsBuffer];
this.metricsBuffer = [];
// Send to time-series database
this.sendToTimeSeriesDB(batch);
// Send to logging system
this.sendToLogSystem(batch);
this.emit('metrics_flushed', { count: batch.length });
}
private sendToTimeSeriesDB(metrics: RequestMetrics[]): void {
// Implementation depends on your time-series DB (Prometheus, InfluxDB, etc.)
// This is a placeholder
console.log(`Flushing ${metrics.length} metrics to time-series DB`);
}
private sendToLogSystem(metrics: RequestMetrics[]): void {
// Send structured logs for analysis
for (const metric of metrics) {
console.log(JSON.stringify({
level: 'info',
type: 'request_metric',
...metric
}));
}
}
getSystemMetrics(): SystemMetrics {
return { ...this.systemMetrics };
}
private startSystemMetricsCollection(): void {
setInterval(() => {
this.collectSystemMetrics();
}, this.config.system_metrics_interval_ms);
}
private collectSystemMetrics(): void {
// Collect system-level metrics (CPU, memory, etc.)
// This would integrate with system monitoring tools
this.systemMetrics.cpu_utilization = process.cpuUsage().system / 1000000; // Simplified
this.systemMetrics.memory_utilization = process.memoryUsage().heapUsed / process.memoryUsage().heapTotal;
}
private initializeSystemMetrics(): SystemMetrics {
return {
requests_per_second: 0,
avg_response_time_ms: 0,
p50_response_time_ms: 0,
p95_response_time_ms: 0,
p99_response_time_ms: 0,
success_rate: 1.0,
error_rate: 0.0,
timeout_rate: 0.0,
provider_failure_rate: 0.0,
cpu_utilization: 0,
memory_utilization: 0,
disk_usage: 0,
network_io: 0,
total_cost_per_hour: 0,
cost_per_request: 0,
cost_trend_24h: 0,
budget_burn_rate: 0,
provider_health_scores: {},
provider_response_times: {},
provider_success_rates: {}
};
}
}
interface MetricsConfig {
flush_interval_ms: number;
system_metrics_interval_ms: number;
retention_days: number;
alerting_enabled: boolean;
}
Integration with Components β
typescript
// Example: Integrating with CEO service
export class BasicCEO {
constructor(private metricsCollector: MetricsCollector) {}
async processQuery(query: UserQuery): Promise<CEORequest> {
const requestId = uuidv4();
this.metricsCollector.recordRequestStart(requestId, query.user_id || 'anonymous');
const startTime = Date.now();
try {
// Intent parsing
const intentStart = Date.now();
const intent = this.intentParser.parseIntent(query);
const intentTime = Date.now() - intentStart;
// Budget allocation
const budgetStart = Date.now();
const budget = this.budgetAllocator.allocateBudget(intent);
const budgetTime = Date.now() - budgetStart;
const totalTime = Date.now() - startTime;
// Record CEO metrics
this.metricsCollector.recordCEOMetrics(requestId, {
intent_parsing_ms: intentTime,
budget_allocation_ms: budgetTime,
total_ms: totalTime
});
return {
query,
intent,
budget,
request_id: requestId,
timestamp: new Date()
};
} catch (error) {
this.metricsCollector.recordError(requestId, {
component: 'ceo',
error_type: 'processing_failed',
error_message: error.message,
recoverable: false,
timestamp: new Date()
});
throw error;
}
}
}
Alerting & SLOs β
Service Level Objectives (SLOs) β
yaml
# Production SLOs
slos:
availability:
target: 99.5%
measurement_window: 30d
alert_threshold: 99.0%
response_time:
target: 95th_percentile < 2000ms
measurement_window: 24h
alert_threshold: 95th_percentile > 3000ms
error_rate:
target: < 1.0%
measurement_window: 1h
alert_threshold: > 2.0%
cost_efficiency:
target: < $0.10 per request
measurement_window: 24h
alert_threshold: > $0.15 per request
quality_score:
target: > 0.8
measurement_window: 1h
alert_threshold: < 0.7
Alert Configurations β
typescript
interface AlertRule {
name: string;
condition: string;
severity: 'critical' | 'warning' | 'info';
threshold: number;
duration: string;
notification_channels: string[];
runbook_url?: string;
}
const alertRules: AlertRule[] = [
{
name: 'High Error Rate',
condition: 'error_rate > threshold',
severity: 'critical',
threshold: 0.05, // 5%
duration: '5m',
notification_channels: ['pagerduty', 'slack-alerts'],
runbook_url: 'https://docs.company.com/runbooks/orchestration-errors'
},
{
name: 'Response Time Degradation',
condition: 'p95_response_time_ms > threshold',
severity: 'warning',
threshold: 3000,
duration: '10m',
notification_channels: ['slack-alerts'],
runbook_url: 'https://docs.company.com/runbooks/performance-issues'
},
{
name: 'Provider Health Degradation',
condition: 'provider_success_rate < threshold',
severity: 'warning',
threshold: 0.9, // 90%
duration: '5m',
notification_channels: ['slack-alerts']
},
{
name: 'Budget Burn Rate High',
condition: 'budget_burn_rate > threshold',
severity: 'warning',
threshold: 100, // cents per hour
duration: '30m',
notification_channels: ['email-finance', 'slack-alerts']
},
{
name: 'Memory Usage High',
condition: 'memory_utilization > threshold',
severity: 'warning',
threshold: 0.85, // 85%
duration: '15m',
notification_channels: ['slack-alerts']
}
];
Dashboards β
Executive Dashboard (High-Level) β
json
{
"dashboard": "Orchestration Executive View",
"panels": [
{
"title": "Request Volume",
"type": "graph",
"metrics": ["requests_per_second"],
"timeframe": "24h"
},
{
"title": "Success Rate",
"type": "stat",
"metrics": ["success_rate"],
"target": 0.995
},
{
"title": "Cost Efficiency",
"type": "graph",
"metrics": ["cost_per_request", "total_cost_per_hour"],
"timeframe": "7d"
},
{
"title": "Quality Score",
"type": "gauge",
"metrics": ["avg_quality_achieved"],
"target": 0.8
}
]
}
Technical Dashboard (Detailed) β
json
{
"dashboard": "Orchestration Technical View",
"panels": [
{
"title": "Component Latency Breakdown",
"type": "stacked_graph",
"metrics": [
"ceo_total_ms",
"acs_provider_scoring_ms",
"acs_execution_ms"
],
"timeframe": "6h"
},
{
"title": "Provider Performance",
"type": "table",
"metrics": [
"provider_response_times",
"provider_success_rates",
"provider_health_scores"
]
},
{
"title": "Error Distribution",
"type": "pie_chart",
"metrics": ["errors_by_component"],
"timeframe": "24h"
},
{
"title": "Resource Utilization",
"type": "multi_stat",
"metrics": [
"cpu_utilization",
"memory_utilization",
"budget_utilization_ratio"
]
}
]
}
Performance Analysis β
Query Patterns β
sql
-- Top expensive queries (cost analysis)
SELECT
intent.domain,
intent.complexity,
AVG(total_cost_cents) as avg_cost,
COUNT(*) as request_count,
AVG(quality_achieved) as avg_quality
FROM request_metrics
WHERE timestamp >= NOW() - INTERVAL '24 hours'
GROUP BY intent.domain, intent.complexity
ORDER BY avg_cost DESC;
-- Provider effectiveness analysis
SELECT
provider_id,
COUNT(*) as requests,
AVG(execution_time_ms) as avg_latency,
SUM(CASE WHEN success THEN 1 ELSE 0 END) * 100.0 / COUNT(*) as success_rate,
AVG(quality_score) as avg_quality
FROM provider_executions
WHERE timestamp >= NOW() - INTERVAL '7 days'
GROUP BY provider_id
ORDER BY success_rate DESC, avg_quality DESC;
-- Budget utilization trends
SELECT
DATE(timestamp) as date,
AVG(budget_utilization_ratio) as avg_utilization,
MAX(budget_utilization_ratio) as max_utilization,
COUNT(CASE WHEN budget_utilization_ratio > 0.8 THEN 1 END) as high_utilization_count
FROM request_metrics
WHERE timestamp >= NOW() - INTERVAL '30 days'
GROUP BY DATE(timestamp)
ORDER BY date;
Optimization Recommendations β
typescript
interface OptimizationInsight {
type: 'cost' | 'performance' | 'quality' | 'reliability';
priority: 'high' | 'medium' | 'low';
description: string;
impact_estimate: string;
action_required: string;
}
const generateOptimizationInsights = (metrics: SystemMetrics): OptimizationInsight[] => {
const insights: OptimizationInsight[] = [];
// Cost optimization
if (metrics.cost_per_request > 15) {
insights.push({
type: 'cost',
priority: 'high',
description: 'Average cost per request is above target',
impact_estimate: 'Potential 20-30% cost reduction',
action_required: 'Review provider selection algorithms and budget allocation'
});
}
// Performance optimization
if (metrics.p95_response_time_ms > 3000) {
insights.push({
type: 'performance',
priority: 'medium',
description: '95th percentile response time exceeds 3 seconds',
impact_estimate: 'Improved user experience',
action_required: 'Analyze slow queries and optimize provider selection'
});
}
// Quality optimization
const avgQuality = Object.values(metrics.provider_health_scores).reduce((a, b) => a + b, 0) /
Object.values(metrics.provider_health_scores).length;
if (avgQuality < 0.8) {
insights.push({
type: 'quality',
priority: 'high',
description: 'Average quality score below target',
impact_estimate: 'Better user satisfaction',
action_required: 'Review quality scoring models and provider capabilities'
});
}
return insights;
};
Configuration & Setup β
Environment Configuration β
typescript
const metricsConfig: MetricsConfig = {
// Collection settings
flush_interval_ms: process.env.NODE_ENV === 'production' ? 30000 : 60000,
system_metrics_interval_ms: 15000,
retention_days: 90,
alerting_enabled: process.env.NODE_ENV === 'production',
// Database settings
timeseries_db: {
type: 'prometheus', // or 'influxdb', 'datadog'
endpoint: process.env.METRICS_DB_ENDPOINT,
auth: process.env.METRICS_DB_AUTH
},
// Alerting settings
alert_manager: {
endpoint: process.env.ALERT_MANAGER_ENDPOINT,
channels: {
slack: process.env.SLACK_WEBHOOK_URL,
pagerduty: process.env.PAGERDUTY_API_KEY,
email: process.env.EMAIL_SMTP_CONFIG
}
}
};
Deployment Integration β
yaml
# docker-compose.yml monitoring stack
version: '3.8'
services:
orchestration:
build: .
environment:
- METRICS_DB_ENDPOINT=http://prometheus:9090
- ALERT_MANAGER_ENDPOINT=http://alertmanager:9093
depends_on:
- prometheus
- grafana
prometheus:
image: prom/prometheus
ports:
- "9090:9090"
volumes:
- ./prometheus.yml:/etc/prometheus/prometheus.yml
grafana:
image: grafana/grafana
ports:
- "3000:3000"
environment:
- GF_SECURITY_ADMIN_PASSWORD=admin
volumes:
- ./grafana-dashboards:/var/lib/grafana/dashboards
alertmanager:
image: prom/alertmanager
ports:
- "9093:9093"
volumes:
- ./alertmanager.yml:/etc/alertmanager/alertmanager.yml
Quick Start Checklist β
Implementation (First Hour) β
- [ ] Add MetricsCollector to your services
- [ ] Implement basic request tracking
- [ ] Set up console logging for metrics
- [ ] Test with sample requests
Monitoring Setup (First Day) β
- [ ] Deploy Prometheus/InfluxDB for time-series storage
- [ ] Configure Grafana dashboards
- [ ] Set up basic alerting rules
- [ ] Test alert notifications
Production Readiness (First Week) β
- [ ] Configure SLOs based on business requirements
- [ ] Set up comprehensive alerting
- [ ] Create runbooks for common issues
- [ ] Implement log aggregation and analysis