Noosphere Layer (L1): Knowledge Layer β
Summary: long-term knowledge layer for AI. Handles global knowledge (ingestion, normalization, cataloging), hybrid retrieval (vector/graph/agent), and quality signals. Delivers linked knowledge fragments upstream; it does not assemble runtime context and does not execute agents.
Contract (high level) β
- Input: user query and optional project context
- Output: ordered list of knowledge fragments with attributes (source, relevance, type) and navigation hints
- Interfaces: MCP (clients), Vector DB, Graph DB, AI agents (librarian/researcher/validator)
Core components β
- MCP Integration β unified protocol for clients
- Smart Router β choose method (vector|graph|agent) by query features
- Vector Search β semantic retrieval over embeddings
- Knowledge Graph β entity relations and architectural navigation
- AI Librarian/Researcher/Validator β expert procedures when search alone is insufficient
- Feedback β collect quality signals and train routing
Data flow (at a glance) β
- Query classification β 2) method selection β 3) candidate retrieval β 4) merge/ranking β 5) return fragments with metadata
Quick links β
- Architecture: ./architecture.md β internals and flows
- Unified search: ./search-abstraction.md β interface and behavior
- Vector search: ./vector-search.md β models and indexing
- Knowledge graph: ./knowledge-graph.md β schemas and traversal
- AI Librarian: ./ai-librarian.md β roles and scenarios
- MCP integration: ./mcp-integration.md β protocols and fields
Scope β
- In scope (L1): ingestion/normalization/validation/archiving, catalogs, hybrid search, metadata and provenance, feedback signals
- Out of scope (L2βL6): project libraries, L4 experience, runtime context assembly, agent policies/skills
Comprehensive Testing & Validation Framework β
L1 Component Testing Strategy β
Knowledge Retrieval Testing:
describe('Noosphere L1 Integration Tests', () => {
describe('Hybrid Search Pipeline', () => {
test('vector search returns relevant fragments', async () => {
const query = "implement OAuth2 authentication patterns";
const results = await noosphere.vectorSearch({
query,
max_results: 10,
similarity_threshold: 0.7
});
expect(results.fragments.length).toBeGreaterThan(3);
expect(results.fragments[0].relevance_score).toBeGreaterThan(0.8);
expect(results.fragments.every(f => f.content.includes("OAuth2") || f.content.includes("authentication"))).toBe(true);
});
test('knowledge graph provides contextual navigation', async () => {
const entity_query = "React hooks lifecycle";
const graph_results = await noosphere.graphSearch({
query: entity_query,
traverse_depth: 2,
include_relations: true
});
expect(graph_results.entities.length).toBeGreaterThan(0);
expect(graph_results.relations.length).toBeGreaterThan(0);
expect(graph_results.navigation_hints).toBeDefined();
});
test('AI agents handle complex research queries', async () => {
const complex_query = "distributed consensus algorithms trade-offs performance vs consistency";
const agent_results = await noosphere.agentSearch({
query: complex_query,
agent_type: "researcher",
depth: "comprehensive"
});
expect(agent_results.fragments.length).toBeGreaterThan(5);
expect(agent_results.synthesis_summary).toBeDefined();
expect(agent_results.research_methodology).toBeDefined();
});
});
describe('Quality & Performance', () => {
test('meets retrieval latency SLA', async () => {
const queries = [
"JavaScript async patterns",
"database indexing strategies",
"microservices communication"
];
const results = await Promise.all(
queries.map(async query => {
const start = Date.now();
const result = await noosphere.search({ query, method: "hybrid" });
return { latency: Date.now() - start, result };
})
);
// P95 latency < 500ms for hybrid search
const latencies = results.map(r => r.latency).sort();
const p95 = latencies[Math.floor(latencies.length * 0.95)];
expect(p95).toBeLessThan(500);
});
});
});
Knowledge Quality Validation β
Content Quality Metrics:
interface KnowledgeQualityMetrics {
content_accuracy: number; // 0.0-1.0, factual correctness
source_authority: number; // 0.0-1.0, source credibility
temporal_relevance: number; // 0.0-1.0, freshness score
conceptual_depth: number; // 0.0-1.0, technical depth
coverage_completeness: number; // 0.0-1.0, topic coverage
}
class KnowledgeQualityValidator {
async validateFragment(fragment: KnowledgeFragment): Promise<QualityScore> {
const validations = await Promise.all([
this.checkFactualAccuracy(fragment),
this.assessSourceCredibility(fragment),
this.evaluateTemporalRelevance(fragment),
this.measureConceptualDepth(fragment),
this.analyzeCoverageCompleteness(fragment)
]);
return {
overall_score: this.calculateOverallScore(validations),
dimension_scores: validations,
quality_flags: this.identifyQualityIssues(validations)
};
}
}
Production Operations Framework β
L1 Monitoring & Observability β
Noosphere Metrics:
noosphere_monitoring:
metrics:
# Search performance metrics
- name: noosphere_search_duration_seconds
type: histogram
buckets: [0.1, 0.2, 0.5, 1.0, 2.0, 5.0]
labels: [method, query_complexity]
- name: noosphere_search_quality_score
type: histogram
buckets: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
labels: [search_method, content_domain]
- name: noosphere_knowledge_freshness
type: gauge
labels: [source, domain]
# System health metrics
- name: noosphere_vector_index_size
type: gauge
labels: [embedding_model]
- name: noosphere_graph_node_count
type: gauge
labels: [entity_type]
alerts:
- name: NoosphereSearchLatencyHigh
condition: noosphere_search_duration_seconds{quantile="0.95"} > 2.0
severity: warning
duration: 2m
- name: NoosphereQualityDegradation
condition: noosphere_search_quality_score{quantile="0.5"} < 0.6
severity: critical
duration: 1m
Knowledge Ingestion Pipeline β
Production Data Pipeline:
class KnowledgeIngestionPipeline {
async ingestKnowledgeSource(source: KnowledgeSource): Promise<IngestionResult> {
const pipeline_stages = [
this.extractContent,
this.normalizeFormat,
this.validateQuality,
this.generateEmbeddings,
this.extractEntities,
this.buildRelations,
this.indexContent,
this.updateMetadata
];
let processed_content = source.raw_content;
const stage_metrics: StageMetric[] = [];
for (const stage of pipeline_stages) {
const start_time = Date.now();
try {
processed_content = await stage(processed_content);
stage_metrics.push({
stage_name: stage.name,
duration_ms: Date.now() - start_time,
success: true
});
} catch (error) {
stage_metrics.push({
stage_name: stage.name,
duration_ms: Date.now() - start_time,
success: false,
error: error.message
});
throw error;
}
}
return {
ingested_fragments: processed_content.fragments.length,
processing_time_ms: stage_metrics.reduce((sum, m) => sum + m.duration_ms, 0),
stage_breakdown: stage_metrics,
quality_score: await this.calculateOverallQuality(processed_content)
};
}
}
Security & Privacy Framework β
Knowledge Security Architecture β
Multi-Layer Security:
interface NoosphereSecurityFramework {
data_classification: {
public_knowledge: SecurityLevel.PUBLIC;
internal_knowledge: SecurityLevel.INTERNAL;
sensitive_knowledge: SecurityLevel.RESTRICTED;
pii_detection: PIIDetectionConfig;
};
access_control: {
authentication: MCP_AUTH_CONFIG;
authorization: RBAC_KNOWLEDGE_POLICIES;
audit_logging: KNOWLEDGE_ACCESS_AUDIT;
};
privacy_preservation: {
differential_privacy: DifferentialPrivacyConfig;
data_anonymization: AnonymizationRules;
retention_policies: DataRetentionPolicy;
};
}
class NoosphereSecurityManager {
async validateKnowledgeAccess(
query: SearchQuery,
user_context: UserContext
): Promise<AccessValidationResult> {
// Multi-stage security validation
const validations = await Promise.all([
this.checkUserAuthentication(user_context),
this.validateQueryPermissions(query, user_context),
this.scanForSensitiveContent(query),
this.checkRateLimits(user_context.user_id),
this.validateDataClassification(query.scope)
]);
const security_score = this.calculateSecurityScore(validations);
if (security_score < 0.8) {
await this.logSecurityEvent({
type: 'knowledge_access_violation',
user_id: user_context.user_id,
query: this.sanitizeQuery(query),
validation_failures: validations.filter(v => !v.passed)
});
return {
access_granted: false,
required_clearance: this.calculateRequiredClearance(validations),
sanitized_query: this.applySanitization(query, validations)
};
}
return { access_granted: true, security_score };
}
}
Implementation Roadmap β
Phase 1: Core Knowledge Infrastructure (v0.1) - 5 weeks β
Weeks 1-2: Foundation
- [ ] MCP protocol implementation
- [ ] Vector search engine (embeddings + indexing)
- [ ] Basic knowledge graph (Neo4j setup)
- [ ] Content ingestion pipeline
Weeks 3-4: Intelligence Layer
- [ ] Meta-agent router with pattern cache
- [ ] AI Librarian agent (research capabilities)
- [ ] Quality validation framework
- [ ] Feedback collection system
Week 5: Integration & Testing
- [ ] Hybrid search orchestration
- [ ] Performance optimization
- [ ] Unit and integration testing
- [ ] Basic monitoring setup
Phase 2: Production Hardening (v0.2) - 3 weeks β
Week 1: Performance & Reliability
- [ ] Advanced caching strategies
- [ ] Auto-scaling and load balancing
- [ ] Comprehensive monitoring dashboard
- [ ] Performance benchmarking
Weeks 2-3: Security & Compliance
- [ ] Security framework implementation
- [ ] Privacy-preserving techniques
- [ ] Audit logging and compliance
- [ ] Production readiness assessment
Phase 3: Advanced Intelligence (v0.3) - 4 weeks β
Weeks 1-2: Enhanced AI Capabilities
- [ ] Advanced AI agents (Researcher, Validator)
- [ ] Machine learning optimization
- [ ] Personalized knowledge routing
- [ ] Continuous learning pipelines
Weeks 3-4: Knowledge Evolution
- [ ] Knowledge graph evolution
- [ ] Temporal knowledge tracking
- [ ] Cross-domain knowledge synthesis
- [ ] Advanced quality metrics
Success Criteria β
Performance Targets:
- Search latency P95 < 500ms
- Knowledge quality score > 0.8
- System availability > 99.9%
- Ingestion throughput > 1000 docs/hour
Quality Metrics:
- Search relevance accuracy > 85%
- Content freshness score > 0.7
- Source diversity index > 0.6
- User satisfaction rating > 4.0/5.0
Operational Excellence:
- Security incident rate < 0.01%
- Data consistency > 99.5%
- MTTR < 10 minutes
- Automated testing coverage > 90%
Quick Links β
Technical Specifications: β
- Architecture: ./architecture.md β Internal components and data flows
- Search Abstraction: ./search-abstraction.md β Unified search interface
- Vector Search: ./vector-search.md β Embedding models and indexing
- Knowledge Graph: ./knowledge-graph.md β Entity schemas and traversal
- AI Librarian: ./ai-librarian.md β Agent roles and capabilities
Integration & APIs: β
- MCP Integration: ./mcp-integration.md β Protocol specifications
- Hyperbolic Space: ./hyperbolic-space.md β Mathematical foundations
- Configuration: ./config.md β System configuration
System Context: β
- Overall Architecture: ../README.md β Complete system overview
- Contracts: ../contracts/README.md β Inter-layer communication
- Standards: /ARCHITECTURE_DOCUMENTATION_STANDARDS.md β Documentation requirements
Status: Architecture specified β Implementation ready β Production target (v0.2)
Next Priority: Phase 1 implementation β MCP protocol, vector search, knowledge graph, and AI agent foundation.