Cross-Layer Feedback Architecture β
Comprehensive mapping of how Evaluation Layer (L8) provides feedback and validation to all system layers.
Feedback Flow Overview β
L8 (Evaluation) ββ L1 (Noosphere)
ββ L2 (Project Library)
ββ L3 (Workshop)
ββ L4 (Experience)
ββ L5 (Memory)
ββ L6 (Orchestration)
ββ L7 (Adapters)
Principle: L8 observes all layer interactions and provides both automated corrections and manual recommendations based on quality, performance, and compliance metrics.
L8 β L1 (Noosphere) Feedback β
Signals from L1 β L8 β
{
"layer": "L1",
"signals": {
"search_quality": {
"ndcg_at_10": 0.72,
"recall_at_10": 0.68,
"precision_at_5": 0.84
},
"response_times": {
"vector_search_ms": 145,
"graph_traversal_ms": 280,
"ai_agent_ms": 1200
},
"source_quality": {
"credibility_scores": [0.89, 0.76, 0.92],
"citation_counts": [245, 12, 387],
"recency_scores": [0.95, 0.45, 0.88]
}
}
}
Automated Actions: L8 β L1 β
Enabled in v0.1:
rerank_weights_adjust
: Modify semantic/BM25 blend ratio when precision drops below 0.75source_blacklist
: Remove sources with credibility < 0.3 or repeated quality issues (TTL: 24h)
Recommendations Only:
- Vector embedding refresh for concept drift
- Knowledge graph pruning for outdated relationships
- AI agent prompt optimization for specific domains
Implementation Example β
// L8 monitoring L1 search quality
class NoosphereFeedback {
async processSearchResults(searchResults: L1SearchResults): Promise<FeedbackAction[]> {
const quality = this.computeQualityMetrics(searchResults);
const actions: FeedbackAction[] = [];
if (quality.precision_at_5 < 0.75) {
actions.push({
type: "rerank_weights_adjust",
target_layer: "L1",
parameters: {
semantic_weight: Math.max(0.4, quality.semantic_performance),
bm25_weight: Math.min(0.6, quality.keyword_performance)
},
ttl_hours: 6,
reason: `Precision@5 degraded to ${quality.precision_at_5}`
});
}
return actions;
}
}
L8 β L2 (Project Library) Feedback β
Signals from L2 β L8 β
{
"layer": "L2",
"signals": {
"indexing_quality": {
"coverage_ratio": 0.89,
"duplicate_detection": 0.95,
"entity_extraction_accuracy": 0.82
},
"retrieval_performance": {
"project_scope_precision": 0.76,
"cross_project_contamination": 0.02
},
"content_freshness": {
"avg_staleness_hours": 18,
"update_lag_ms": 450
}
}
}
Automated Actions: L8 β L2 β
Enabled in v0.1:
stale_content_flag
: Mark content older than threshold for refreshduplicate_merge
: Automatically merge near-duplicate entries (confidence > 0.95)
Recommendations Only:
- Re-indexing triggers for degraded entity extraction
- Project boundary adjustments for contamination issues
- Incremental update optimization
L8 β L3 (Workshop) Feedback β
Signals from L3 β L8 β
{
"layer": "L3",
"signals": {
"tool_reliability": {
"success_rates": {"npm": 0.94, "git": 0.98, "docker": 0.87},
"avg_execution_time": {"npm": 2400, "git": 180, "docker": 8500},
"error_categories": {"timeout": 0.05, "permission": 0.02, "network": 0.01}
},
"validation_effectiveness": {
"false_positive_rate": 0.03,
"false_negative_rate": 0.07,
"coverage": 0.89
}
}
}
Automated Actions: L8 β L3 β
Enabled in v0.1:
tool_blacklist
: Temporarily disable tools with success rate < 0.80 (TTL: 2h)timeout_adjust
: Increase timeouts for tools with high timeout rates
Recommendations Only:
- Tool replacement suggestions for consistently poor performers
- Validation rule updates for high false positive/negative rates
- Tool chain optimization for performance improvements
L8 β L4 (Experience) Feedback β
Signals from L4 β L8 β
{
"layer": "L4",
"signals": {
"adaptation_effectiveness": {
"mcp_success_rate": 0.91,
"http_success_rate": 0.96,
"websocket_stability": 0.88
},
"experience_quality": {
"task_completion_rate": 0.83,
"user_satisfaction_proxy": 0.79,
"hint_relevance": 0.72
},
"learning_velocity": {
"pattern_recognition_improvement": 0.15,
"adaptation_speed_ms": 850
}
}
}
Automated Actions: L8 β L4 β
Enabled in v0.1:
adapter_fallback
: Switch to backup adapter when primary fails repeatedlyexperience_weight_adjust
: Modify experience influence based on quality scores
Recommendations Only:
- Experience pattern consolidation for improved learning
- Adapter configuration optimization
- User interaction pattern analysis for UX improvements
L8 β L5 (Memory) Feedback β
Signals from L5 β L8 β
{
"layer": "L5",
"signals": {
"context_assembly": {
"relevance_score": 0.81,
"coherence_score": 0.78,
"completeness": 0.85
},
"memory_integrity": {
"contradiction_rate": 0.02,
"staleness_distribution": [0.15, 0.35, 0.40, 0.10],
"consolidation_effectiveness": 0.87
},
"kv_policy_performance": {
"pin_hit_rate": 0.94,
"eviction_accuracy": 0.89,
"compression_ratio": 0.76
}
}
}
Automated Actions: L8 β L5 β
Enabled in v0.1:
contradiction_flag
: Mark contradictory memory entries for reviewkv_policy_tune
: Adjust pin/evict thresholds based on hit rates
Recommendations Only:
- Memory consolidation triggers for fragmented knowledge
- Context assembly strategy optimization
- Long-term memory retention policy updates
L8 β L6 (Orchestration) Feedback β
Signals from L6 β L8 β
{
"layer": "L6",
"signals": {
"coordination_efficiency": {
"acs_decision_quality": 0.86,
"ceo_strategy_success": 0.79,
"hcs_streaming_stability": 0.91
},
"end_to_end_performance": {
"p95_latency_ms": 1250,
"success_rate": 0.94,
"user_satisfaction": 0.82
},
"resource_utilization": {
"token_efficiency": 0.88,
"cost_per_request": 0.045,
"load_balancing": 0.92
}
}
}
Automated Actions: L8 β L6 β
Enabled in v0.1:
strategy_downgrade
: Switch to simpler strategies when complex ones fail repeatedlytimeout_escalation
: Increase soft deadlines when system is under stress
Recommendations Only:
- ACS provider selection algorithm improvements
- CEO decision tree optimization
- HCS streaming buffer size adjustments
L8 β L7 (Adapters) Feedback β
Signals from L7 β L8 β
{
"layer": "L7",
"signals": {
"protocol_performance": {
"mcp_latency_p95": 230,
"http_latency_p95": 180,
"websocket_latency_p95": 95
},
"client_satisfaction": {
"connection_stability": 0.96,
"error_recovery": 0.91,
"feature_completeness": 0.88
},
"compatibility": {
"client_version_support": 0.93,
"backwards_compatibility": 0.87
}
}
}
Automated Actions: L8 β L7 β
Enabled in v0.1:
protocol_fallback
: Switch protocols when one shows consistent poor performanceconnection_retry_tune
: Adjust retry policies based on failure patterns
Recommendations Only:
- Client SDK optimization suggestions
- Protocol version upgrade recommendations
- Backwards compatibility maintenance priorities
Cross-Layer Correlation Analysis β
Multi-Layer Issue Detection β
L8 identifies issues that span multiple layers:
interface CrossLayerIssue {
issue_id: string;
affected_layers: string[];
correlation_strength: number;
root_cause_layer: string;
propagation_path: string[];
recommended_actions: Action[];
}
// Example: Poor end-to-end performance
const issue: CrossLayerIssue = {
issue_id: "perf_degradation_001",
affected_layers: ["L1", "L6", "L7"],
correlation_strength: 0.87,
root_cause_layer: "L1",
propagation_path: ["L1_slow_search", "L6_timeout_escalation", "L7_client_disconnects"],
recommended_actions: [
{ layer: "L1", action: "vector_index_rebuild", priority: "high" },
{ layer: "L6", action: "timeout_policy_review", priority: "medium" },
{ layer: "L7", action: "client_timeout_config", priority: "low" }
]
};
Feedback Loop Safety Mechanisms β
Circuit Breakers β
- Maximum 2 automated actions per layer per hour
- All actions have mandatory TTL (max 24 hours)
- Automatic rollback if metrics worsen after action
Audit Trail β
interface FeedbackAuditEntry {
timestamp: string;
action_id: string;
source_layer: string;
target_layer: string;
action_type: string;
trigger_metric: string;
trigger_value: number;
threshold: number;
ttl_hours: number;
outcome: "applied" | "rejected" | "rolled_back";
impact_metrics: Record<string, number>;
}
Human Oversight β
- All automated actions logged to monitoring dashboard
- Degradation alerts trigger immediate human review
- Weekly feedback effectiveness reports
- Quarterly feedback policy review and optimization
Implementation Timeline β
v0.1 (Current):
- Basic feedback loops for L1 (Noosphere) and L3 (Workshop)
- Safety mechanisms and audit trails
- Manual recommendation system for all layers
v0.2 (Next Quarter):
- Automated feedback for L2, L4, L5 layers
- Cross-layer correlation analysis
- Advanced safety mechanisms
v1.0 (Future):
- Full automated feedback across all layers
- Machine learning-based feedback optimization
- Predictive quality management
Status: Specification ready for implementation Dependencies: Layer monitoring infrastructure, metrics collection, action execution framework