L3 Orchestration Layer: Intelligent Context Assembly
The Executive Function of Mnemoverse: L3 orchestration intelligently decides what information to include in context under strict resource constraints, making smart trade-offs between quality, speed, and cost.
🎯 What L3 Does (Simple Explanation)
When you ask: "How do I fix authentication timeouts in React on mobile?"
L3 orchestration:
- CEO understands your intent → "implementation guidance for React mobile auth"
- ACS makes smart choices → "search L2 project patterns first, get L4 experience insights, fallback to L1 if needed"
- HCS delivers results → assembles the best 3-5 relevant fragments within your token budget
Result: You get precisely what you need, not everything that exists.
🏗️ Components Overview
Component | Role | Think of it as... |
---|---|---|
CEO (Context/Execution Orchestrator) | Intent interpreter & resource manager | "Executive assistant" who understands what you really need |
ACS (Adaptive Context Scaling) | Smart context assembly engine | "Research librarian" who finds the best sources within your budget |
HCS (Hyperbolic Communication System) | Transport & delivery coordinator | "Logistics coordinator" who packages and delivers results efficiently |
📚 Documentation Navigation
🚀 Start Here (Progressive Complexity)
- Integration Flows ⭐ — See concrete examples of how CEO→ACS→HCS work together
- MVP Implementation — Minimal viable orchestration for v0.1
- API Contracts — How components communicate
🏗️ Component Deep-Dives
- CEO Architecture — Intent interpretation & resource management
- ACS Architecture — Adaptive context scaling engine
- HCS Protocol — Transport & delivery coordination
🔧 Implementation & Operations
- API Documentation: HTTP | Internal | Provider
- Error Handling: Errors | Warnings | Privacy
- Monitoring: Metrics | KV Policy
🔥 Quick Examples
Simple Query: "React auth timeout fix"
CEO: intent="implementation_guidance", budget=3000 tokens, 800ms
ACS: L2 primary → L4 patterns → L1 if gaps
Result: 3 focused fragments, 2847 tokens, 756ms
Complex Query: "Compare state management for large React apps"
CEO: intent="comparative_research", budget=8000 tokens, 2000ms
ACS: L1 authoritative(40%) + L2 projects(30%) + L4 outcomes(30%)
Result: synthesis framework, comparison matrix, decision tree
Resource Pressure: Limited to 1500 tokens, 400ms
ACS: Graceful degradation → L2 only, macro-focused, 3 fragments max
Result: Still actionable guidance, just more concise
Why an orchestrator
At each request, we must decide "how much and what to put into context" under strict token/time budgets. The orchestrator (ACS) makes an explicit trade‑off between quality, latency, and budget by selecting sources (L2/L4/L1), the level of detail (LOD), and the ordering of fragments.
Without it: either slow/expensive (load everything) or fast with blind spots (single source).
Causal chain (from general to specific)
- CEO formulates intent and budgets:
{ tokens_max, time_ms, risk }
- ACS plans under budgets:
- choose sources (L2 as primary, L4 as hints, L1 as explicit expansion)
- set LOD: macro → micro → atomic
- assign per‑provider deadlines (time slices), partial responses allowed
- Providers return candidates (snippet + cost + source)
- ACS selects by simple benefit/cost, trims to budget, forms KV policy (pin/compress/evict)
- HCS: reserved for transport; streaming is disabled in v0 (batch delivery)
- L5/client assembles final context → model
Minimal algorithm v0 (heuristics, no ML)
- Input: intent + budgets + risk
- Plan: sources = [L2] (primary); if insufficient → consider L1 as explicit expansion; L4 is a boosting channel
- Parallel fetch with per‑provider deadlines; partial accepted
- Ranking: score = benefit / (1 + cost_tokens)
- Budget trim: first by time (deadline), then by tokens (reduce LOD, then count)
- Output: ordered fragments + kv_policy + metrics (used_tokens, planner_ms, source_breakdown)
- Degradation: prefer L2; allow L1 expansion explicitly when needed
Pseudocode (simplified):
plan = choose_sources(intent, budget)
cands = fetch_parallel(plan, deadlines)
ranked = sort_by(benefit/cost, cands)
frags = trim_to_budget(ranked, tokens_max, LOD_policy)
return { fragments: frags, kv_policy, metrics }
Non‑goals (v0)
- No learned planner (rules only)
- No deep KG traversal (L1 is vector‑first expansion, not hidden fallback)
- No raw sensitive text; providers must redact where necessary
- No long‑term state (except optional small pattern caches)
Roles
- CEO → calls ACS, sets intent and budgets
- ACS → orchestrates sources (L2/L4/L1), assembles and trims content
- HCS → transport channel (streaming disabled in v0)
Decision rules v0 (fixed)
- Priorities: Quality → strict token budget adherence → Latency (best‑effort)
- Budgets: tokens_max is strict; time_ms is a comfort target (no hard fail)
- Sources: L2 is primary; L1 is explicit expansion (never implicit fallback); L4 boosts hints
- Expansion flow: if project data is insufficient, emit a warning and go to Noosphere (L1) explicitly
- Deadlines: per‑provider “time slice”; accept partial responses
- Budget trim order: reduce LOD first, then fragment count
- Streaming: disabled in v0 (batch)
- Failures: no auto‑fallback; retry first and surface structured error/options (see ADR)
Documents
- MVP: mvp.md
- API contracts (CEO↔ACS↔HCS): internal.md
- Candidate Provider API (L2/L4/L1 adapters): provider.md
- Roadmap: roadmap.md
- Contracts registry (canonical defaults): ../contracts-registry.md
- ADR: adr-acs-failure-policy.md
Contracts (v0.1)
Inputs
- render_request.v0: { query, intent?, budgets: { tokens_max, time_ms }, risk?, privacy_mode, request_id }
- provider_request.v0 (internal):
Processing
- CEO: classify intent, estimate budgets, normalize privacy_mode
- ACS: choose sources, parallel fetch with deadlines, rank by benefit/cost, trim to budgets, form kv_policy
- HCS: package response (batch only), attach metrics and warnings
Outputs
- render_context_reply.v0: { fragments[], kv_policy, metrics: { used_tokens, planner_ms, source_breakdown }, warnings?, error? }
SLO / Targets
- Planning p95 < 150ms; Fetch window configurable per provider (typ. 300–600ms)
- End-to-end orchestration (plan+fetch+assemble) p95 < 800ms
- Budget adherence: 0 hard token overruns; time budget is soft with graceful degradation
Edge Cases
- Provider timeouts → partial results, warning code
PROVIDER_TIMEOUT_<LAYER>
- Insufficient project context → explicit L1 expansion with warning L2_INSUFFICIENT_COVERAGE
- Privacy mode = block → only metadata for sensitive fragments
Resilience & Observability
Resilience
- Per-provider circuit breakers (failure_threshold, cooldown_ms)
- Deadlines with partial acceptance; retries only when safe and cheap
- Degradation order: reduce LOD → reduce fragment count → drop optional sources
Metrics (Prometheus-like names)
- orchestration_request_duration_seconds
- orchestration_budget_utilization
- orchestration_provider_latency
- orchestration_budget_violations_total, orchestration_provider_errors_total
Tracing
- request_id propagation across CEO→ACS→Providers; span attributes: budgets, sources, counts
Privacy & Security
Controls
- privacy_mode: allow|redact|block enforced pre-ranking; blocked fragments surfaced as metadata only
- No raw sensitive text from providers; contracts require redaction at source adapters
AuthN/Z
- mTLS inside mesh; JWT with layer claims at boundaries; least-privilege per-role permissions
Audit
- Structured warnings and decision logs for source expansion and degradations
Operational Excellence
Monitoring & Observability
Orchestration Metrics:
# Core orchestration performance
orchestration_request_duration_seconds{component="acs", operation="plan"}
orchestration_request_duration_seconds{component="acs", operation="fetch"}
orchestration_request_duration_seconds{component="acs", operation="rank"}
# Budget management metrics
orchestration_budget_utilization{layer="L1", type="tokens"}
orchestration_budget_utilization{layer="L2", type="time_ms"}
orchestration_budget_violations_total{layer="L5", violation_type="timeout"}
# Provider interaction metrics
orchestration_provider_latency{provider="L1", operation="search"}
orchestration_provider_errors{provider="L2", error_type="timeout"}
orchestration_provider_success_rate{provider="L4"}
# Quality metrics
orchestration_context_quality{metric="relevance_score"}
orchestration_context_quality{metric="coherence_score"}
orchestration_fragment_count{layer="L1"}
Alerting Rules:
# orchestration-alerts.yml
groups:
- name: orchestration-critical
rules:
- alert: OrchestrationHighLatency
expr: orchestration_request_duration_seconds{quantile="0.95"} > 1.0
for: 2m
labels:
severity: critical
annotations:
summary: "Orchestration P95 latency above 1s"
- alert: BudgetViolationHigh
expr: rate(orchestration_budget_violations_total[5m]) > 0.1
for: 1m
labels:
severity: warning
annotations:
summary: "High rate of budget violations"
- name: orchestration-performance
rules:
- alert: ProviderFailureRate
expr: rate(orchestration_provider_errors[5m]) / rate(orchestration_provider_requests[5m]) > 0.05
for: 3m
labels:
severity: warning
annotations:
summary: "High provider failure rate: {{ $labels.provider }}"
Security Model
Authentication & Authorization:
# Security policies for orchestration layer
orchestration_security:
authentication:
method: "service_mesh_mTLS"
token_validation: "jwt_with_layer_claims"
authorization:
ceo_permissions:
- "orchestration:plan"
- "orchestration:budget:allocate"
- "providers:invoke"
acs_permissions:
- "providers:search"
- "providers:rank"
- "memory:assemble"
provider_permissions:
- "layer:serve"
- "metrics:report"
rate_limiting:
ceo_requests: "1000/hour"
acs_operations: "10000/hour"
provider_calls: "50000/hour"
Security Boundaries:
- CEO↔ACS: Internal service mesh, encrypted channels
- ACS↔Providers: Provider authentication, request signing
- Cross-Layer: Layer isolation, capability-based access
Advanced Testing & Validation
Unit Testing Framework
ACS Component Testing:
describe('AdaptiveContextScaling', () => {
describe('Budget Planning', () => {
test('allocates budgets within constraints', async () => {
const intent = {
query: "debug React authentication",
urgency: "medium",
complexity: "high"
};
const budgets = { tokens_max: 2000, time_ms: 1000 };
const plan = await acs.createPlan(intent, budgets);
expect(plan.total_budget.tokens).toBeLessThanOrEqual(2000);
expect(plan.total_budget.time_ms).toBeLessThanOrEqual(1000);
expect(plan.providers).toHaveLength(3); // L1, L2, L4
});
test('adapts plan under budget pressure', async () => {
const intent = { query: "complex technical query", complexity: "very_high" };
const restrictiveBudgets = { tokens_max: 500, time_ms: 200 };
const plan = await acs.createPlan(intent, restrictiveBudgets);
// Should reduce LOD and provider count
expect(plan.lod_profile.atomic).toBeLessThan(20);
expect(plan.providers.length).toBeLessThanOrEqual(2);
});
});
describe('Fragment Ranking', () => {
test('ranks fragments by benefit/cost ratio', async () => {
const fragments = [
{ content: "high value", benefit: 0.9, cost_tokens: 100 },
{ content: "medium value", benefit: 0.7, cost_tokens: 50 },
{ content: "low value", benefit: 0.3, cost_tokens: 200 }
];
const ranked = await acs.rankFragments(fragments);
// Should prioritize medium value (best ratio: 0.7/50 = 0.014)
expect(ranked[0].content).toBe("medium value");
expect(ranked[1].content).toBe("high value");
expect(ranked[2].content).toBe("low value");
});
});
});
CEO Component Testing:
describe('ContextExecutionOrchestrator', () => {
describe('Intent Processing', () => {
test('classifies query intent correctly', async () => {
const queries = [
{ text: "fix authentication bug", expected: "debug_issue" },
{ text: "explain React hooks", expected: "learn_concept" },
{ text: "implement OAuth flow", expected: "build_feature" }
];
for (const query of queries) {
const intent = await ceo.classifyIntent(query.text);
expect(intent.primary).toBe(query.expected);
expect(intent.confidence).toBeGreaterThan(0.7);
}
});
test('estimates resource budgets appropriately', async () => {
const complexQuery = "implement distributed caching with Redis cluster";
const simpleQuery = "what is a variable";
const complexBudgets = await ceo.estimateBudgets(complexQuery);
const simpleBudgets = await ceo.estimateBudgets(simpleQuery);
expect(complexBudgets.tokens_max).toBeGreaterThan(simpleBudgets.tokens_max);
expect(complexBudgets.time_ms).toBeGreaterThan(simpleBudgets.time_ms);
});
});
});
Integration Testing
End-to-End Orchestration Flow:
describe('Orchestration Integration', () => {
test('complete CEO→ACS→Providers flow', async () => {
const userQuery = "debug memory leak in React component";
// 1. CEO processes intent
const intent = await ceo.processQuery(userQuery);
expect(intent.primary).toBe("debug_issue");
// 2. ACS creates plan
const plan = await acs.createPlan(intent, intent.budgets);
expect(plan.providers).toContain("L2"); // Should include project library
// 3. Execute provider calls
const results = await acs.executeProviders(plan);
expect(results.fragments.length).toBeGreaterThan(0);
// 4. Assemble final context
const context = await acs.assembleContext(results, plan.budgets);
expect(context.total_tokens).toBeLessThanOrEqual(plan.budgets.tokens_max);
// 5. Verify quality metrics
expect(context.quality_score).toBeGreaterThan(0.6);
expect(context.relevance_score).toBeGreaterThan(0.7);
});
});
Chaos Engineering
Orchestration Resilience Testing:
describe('Orchestration Chaos Tests', () => {
test('handles provider failures gracefully', async () => {
// Simulate L1 provider failure
mockProvider.L1.simulateFailure({ type: 'timeout', duration: 5000 });
const intent = { query: "technical question", budgets: { tokens_max: 1000, time_ms: 800 } };
const result = await orchestrator.processRequest(intent);
// Should complete with L2/L4 providers only
expect(result.success).toBe(true);
expect(result.warnings).toContain('L1_PROVIDER_UNAVAILABLE');
expect(result.context.source_breakdown.L1).toBe(0);
expect(result.context.source_breakdown.L2).toBeGreaterThan(0);
});
test('manages resource exhaustion', async () => {
// Simulate high load scenario
const concurrentRequests = Array.from({ length: 100 }, (_, i) => ({
query: `concurrent query ${i}`,
budgets: { tokens_max: 2000, time_ms: 1000 }
}));
const results = await Promise.allSettled(
concurrentRequests.map(req => orchestrator.processRequest(req))
);
const successful = results.filter(r => r.status === 'fulfilled').length;
const failed = results.filter(r => r.status === 'rejected').length;
// System should handle graceful degradation
expect(successful / (successful + failed)).toBeGreaterThan(0.8);
});
});
Performance Optimization
Caching Strategies
ACS Performance Optimization:
class OptimizedACS {
private planCache = new LRUCache<string, ExecutionPlan>({ max: 1000, ttl: 300000 });
private fragmentCache = new LRUCache<string, Fragment[]>({ max: 5000, ttl: 600000 });
async createOptimizedPlan(intent: Intent, budgets: Budgets): Promise<ExecutionPlan> {
const cacheKey = this.generatePlanCacheKey(intent, budgets);
// Check plan cache first
const cachedPlan = this.planCache.get(cacheKey);
if (cachedPlan && this.isPlanStillValid(cachedPlan)) {
return cachedPlan;
}
// Create new plan with performance optimizations
const plan = await this.createPlan(intent, budgets);
// Optimize provider selection based on historical performance
plan.providers = await this.optimizeProviderSelection(plan.providers);
// Cache for future use
this.planCache.set(cacheKey, plan);
return plan;
}
private async optimizeProviderSelection(providers: Provider[]): Promise<Provider[]> {
const performanceStats = await this.getProviderPerformanceStats();
return providers.sort((a, b) => {
const aScore = (performanceStats[a.id]?.success_rate || 0.5) /
(performanceStats[a.id]?.avg_latency_ms || 1000);
const bScore = (performanceStats[b.id]?.success_rate || 0.5) /
(performanceStats[b.id]?.avg_latency_ms || 1000);
return bScore - aScore;
});
}
}
Comprehensive Testing & Validation Framework
Component Testing Strategy
Orchestration Layer Testing Pyramid:
describe('Orchestration Integration Tests', () => {
describe('CEO → ACS → HCS Flow', () => {
test('complete context assembly workflow', async () => {
const user_query = "implement JWT authentication with role-based access control";
// 1. CEO processes user intent
const ceo_response = await ceo.processUserRequest({
query: user_query,
context: { project_type: "nodejs-express" },
user_id: "test-user-001"
});
expect(ceo_response.acs_request.intent).toBe("implement_authentication_system");
expect(ceo_response.acs_request.budgets.tokens_max).toBeGreaterThan(2000);
// 2. ACS processes context request
const acs_response = await acs.processContextRequest(ceo_response.acs_request);
expect(acs_response.fragments.length).toBeGreaterThan(3);
expect(acs_response.metrics.quality_score).toBeGreaterThan(0.75);
expect(acs_response.kv_policy.pin.length).toBeGreaterThan(0);
// 3. HCS handles delivery (batch mode in v0)
const hcs_response = await hcs.deliverContext({
fragments: acs_response.fragments,
delivery_mode: "batch",
user_preferences: { format: "structured" }
});
expect(hcs_response.success).toBe(true);
expect(hcs_response.delivered_fragments.length).toBe(acs_response.fragments.length);
// 4. End-to-end validation
const final_context = hcs_response.assembled_context;
expect(final_context.total_tokens).toBeLessThanOrEqual(ceo_response.acs_request.budgets.tokens_max);
expect(final_context.coherence_score).toBeGreaterThan(0.8);
});
test('handles provider failures gracefully', async () => {
// Simulate L1 provider failure
mockProviderRegistry.simulateFailure('L1', { type: 'timeout', duration: 3000 });
const user_query = "research distributed consensus algorithms";
const ceo_response = await ceo.processUserRequest({ query: user_query, context: {}, user_id: "test-user-002" });
const acs_response = await acs.processContextRequest(ceo_response.acs_request);
// Should complete with L2/L4 providers
expect(acs_response.fragments.length).toBeGreaterThan(0);
expect(acs_response.warnings).toContain('L1_PROVIDER_TIMEOUT');
expect(acs_response.metrics.source_breakdown.L1).toBe(0);
expect(acs_response.metrics.source_breakdown.L2 + acs_response.metrics.source_breakdown.L4).toBeGreaterThan(0);
});
});
describe('Budget Management Across Components', () => {
test('enforces budget constraints end-to-end', async () => {
const restrictive_budget = { tokens_max: 1000, time_ms: 500 };
const complex_query = "comprehensive system architecture analysis";
const ceo_response = await ceo.processUserRequest({
query: complex_query,
budget_constraints: restrictive_budget,
user_id: "budget-test-user"
});
expect(ceo_response.acs_request.budgets.tokens_max).toBeLessThanOrEqual(1000);
expect(ceo_response.acs_request.budgets.time_ms).toBeLessThanOrEqual(500);
const acs_response = await acs.processContextRequest(ceo_response.acs_request);
expect(acs_response.metrics.total_tokens_used).toBeLessThanOrEqual(1000);
expect(acs_response.metrics.processing_time_ms).toBeLessThanOrEqual(500);
// Quality should degrade gracefully under budget pressure
expect(acs_response.metrics.quality_score).toBeGreaterThan(0.6); // Acceptable degradation
});
});
});
Performance Testing
Load Testing Framework:
describe('Orchestration Performance Tests', () => {
test('meets system-wide latency SLA under load', async () => {
const concurrent_requests = 200;
const test_queries = [
"debug authentication issue",
"implement payment processing",
"optimize database performance",
"set up monitoring system",
"create user dashboard"
];
const requests = Array.from({ length: concurrent_requests }, (_, i) => ({
query: test_queries[i % test_queries.length],
context: { test_id: i },
user_id: `load-test-user-${i}`
}));
const start_time = Date.now();
const results = await Promise.allSettled(
requests.map(async (req) => {
const ceo_response = await ceo.processUserRequest(req);
const acs_response = await acs.processContextRequest(ceo_response.acs_request);
return { ceo_response, acs_response };
})
);
const total_time = Date.now() - start_time;
const successful_results = results.filter(r => r.status === 'fulfilled');
const success_rate = successful_results.length / results.length;
// System-wide performance targets
expect(success_rate).toBeGreaterThan(0.95); // 95% success rate
expect(total_time).toBeLessThan(30000); // 200 requests in < 30 seconds
// Individual request performance
const response_times = successful_results.map(r =>
(r as PromiseFulfilledResult<any>).value.acs_response.metrics.processing_time_ms
);
const p95_latency = response_times.sort()[Math.floor(response_times.length * 0.95)];
expect(p95_latency).toBeLessThan(2000); // P95 < 2s end-to-end
});
});
Production Operations Excellence
System-Wide Monitoring
Orchestration Observability Dashboard:
# Comprehensive monitoring configuration
orchestration_monitoring:
dashboards:
- name: "Orchestration Overview"
panels:
- title: "End-to-End Request Flow"
type: "sankey"
query: |
sum(rate(orchestration_requests_total[5m])) by (component, status)
- title: "Budget Utilization Efficiency"
type: "gauge"
query: |
avg(orchestration_budget_utilization{type="tokens"}) * 100
target: 85 # Target 85% utilization efficiency
- title: "Cross-Component Latency Breakdown"
type: "stacked_bar"
queries:
ceo_latency: avg(ceo_processing_duration_seconds) * 1000
acs_latency: avg(acs_processing_duration_seconds) * 1000
hcs_latency: avg(hcs_delivery_duration_seconds) * 1000
- name: "Quality & User Experience"
panels:
- title: "Context Quality Score Trend"
type: "line"
query: |
avg_over_time(orchestration_context_quality[1h])
target: 0.8
- title: "User Satisfaction by Query Type"
type: "heatmap"
query: |
avg(ceo_user_satisfaction_score) by (query_type, user_segment)
- title: "Provider Health Matrix"
type: "table"
query: |
avg(orchestration_provider_success_rate) by (provider_id)
alert_groups:
- name: "orchestration-critical"
rules:
- alert: "OrchestrationCascadeFailure"
expr: |
(
rate(ceo_errors_total[5m]) > 0.05 AND
rate(acs_errors_total[5m]) > 0.05 AND
rate(hcs_errors_total[5m]) > 0.05
)
for: 1m
severity: critical
annotations:
summary: "Multiple orchestration components failing simultaneously"
runbook: "https://docs.mnemoverse.com/runbooks/orchestration-cascade-failure"
- alert: "OrchestrationQualityDegradation"
expr: |
avg(orchestration_context_quality) < 0.6
for: 3m
severity: warning
annotations:
summary: "Context quality below acceptable threshold"
- name: "orchestration-performance"
rules:
- alert: "OrchestrationHighLatency"
expr: |
histogram_quantile(0.95, orchestration_request_duration_seconds) > 2.0
for: 2m
severity: warning
- alert: "BudgetWasteHigh"
expr: |
(1 - avg(orchestration_budget_utilization)) > 0.3
for: 5m
severity: warning
Deployment Architecture
Production Deployment Strategy:
# Multi-region orchestration deployment
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
name: mnemoverse-orchestration
namespace: argocd
spec:
project: mnemoverse
source:
repoURL: https://github.com/mnemoverse/orchestration
targetRevision: main
path: k8s/overlays/production
destination:
server: https://kubernetes.default.svc
namespace: mnemoverse-orchestration
syncPolicy:
automated:
prune: true
selfHeal: true
syncOptions:
- CreateNamespace=true
---
# Service mesh configuration
apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
name: orchestration-routing
spec:
hosts:
- orchestration.mnemoverse.internal
http:
- match:
- headers:
x-user-tier:
exact: premium
route:
- destination:
host: orchestration-premium
port:
number: 80
weight: 100
- route:
- destination:
host: orchestration-standard
port:
number: 80
weight: 100
---
# Circuit breaker configuration
apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:
name: orchestration-circuit-breaker
spec:
host: orchestration.mnemoverse.internal
trafficPolicy:
outlierDetection:
consecutiveErrors: 3
interval: 30s
baseEjectionTime: 30s
maxEjectionPercent: 50
connectionPool:
tcp:
maxConnections: 100
http:
http1MaxPendingRequests: 50
maxRequestsPerConnection: 10
Disaster Recovery
Orchestration DR Strategy:
class OrchestrationDisasterRecovery {
async executeFailoverProcedure(failure_type: FailureType): Promise<FailoverResult> {
const recovery_plan = this.getRecoveryPlan(failure_type);
switch (failure_type) {
case 'REGION_OUTAGE':
return this.handleRegionFailover(recovery_plan);
case 'DATABASE_FAILURE':
return this.handleDatabaseFailover(recovery_plan);
case 'PROVIDER_CASCADE_FAILURE':
return this.handleProviderFailover(recovery_plan);
case 'COMPUTE_RESOURCE_EXHAUSTION':
return this.handleResourceFailover(recovery_plan);
default:
return this.handleGenericFailover(recovery_plan);
}
}
private async handleRegionFailover(plan: RecoveryPlan): Promise<FailoverResult> {
// 1. Detect healthy regions
const healthy_regions = await this.detectHealthyRegions();
// 2. Redirect traffic
await this.updateTrafficRouting(healthy_regions);
// 3. Scale up in healthy regions
await this.scaleUpInRegions(healthy_regions, plan.scale_factor);
// 4. Synchronize state
await this.synchronizeCriticalState(healthy_regions);
// 5. Update monitoring
await this.updateMonitoringTargets(healthy_regions);
return {
success: true,
recovery_time_seconds: Date.now() - plan.start_time,
active_regions: healthy_regions,
estimated_capacity: plan.target_capacity * 0.8 // 80% capacity during DR
};
}
}
Security Framework
Multi-Layer Security Architecture
Security Implementation:
interface OrchestrationSecurityFramework {
network_security: {
service_mesh: "istio";
mtls_enforcement: boolean;
network_policies: NetworkPolicy[];
ingress_protection: WAFConfig;
};
application_security: {
authentication: JWTConfig;
authorization: RBACConfig;
input_validation: ValidationConfig;
output_sanitization: SanitizationConfig;
};
data_security: {
encryption_at_rest: EncryptionConfig;
encryption_in_transit: TLSConfig;
data_classification: DataClassificationPolicy;
pii_handling: PIIHandlingConfig;
};
monitoring_security: {
audit_logging: AuditConfig;
intrusion_detection: IDSConfig;
vulnerability_scanning: VulnScanConfig;
compliance_monitoring: ComplianceConfig;
};
}
class OrchestrationSecurityManager {
async performSecurityValidation(
request: OrchestrationRequest,
context: SecurityContext
): Promise<SecurityValidationResult> {
const validations = await Promise.all([
this.validateNetworkSecurity(request, context),
this.validateApplicationSecurity(request, context),
this.validateDataSecurity(request, context),
this.performThreatDetection(request, context)
]);
const security_score = this.calculateSecurityScore(validations);
if (security_score < this.security_threshold) {
await this.triggerSecurityIncident({
type: 'security_validation_failure',
request_id: request.id,
validations: validations.filter(v => !v.passed),
severity: this.calculateSeverity(security_score)
});
return {
approved: false,
block_request: security_score < 0.3,
required_mitigations: this.generateMitigations(validations)
};
}
return { approved: true, security_score };
}
}
Implementation Roadmap
Phase 1: Core Orchestration (v0.1) - 6 weeks
Weeks 1-3: Component Implementation
- [ ] CEO: Intent processing and budget allocation
- [ ] ACS: Context assembly and provider orchestration
- [ ] HCS: Basic batch delivery (streaming disabled)
- [ ] Integration layer and contract validation
- [ ] Unit and integration testing frameworks
Weeks 4-6: System Integration
- [ ] End-to-end workflow implementation
- [ ] Error handling and graceful degradation
- [ ] Basic monitoring and logging
- [ ] Performance optimization and tuning
- [ ] Security framework implementation
Phase 2: Production Hardening (v0.2) - 4 weeks
Weeks 1-2: Reliability & Performance
- [ ] Comprehensive monitoring and alerting
- [ ] Auto-scaling and load balancing
- [ ] Disaster recovery procedures
- [ ] Performance benchmarking and optimization
Weeks 3-4: Security & Compliance
- [ ] Security penetration testing
- [ ] GDPR compliance implementation
- [ ] Audit logging and compliance reporting
- [ ] Production readiness assessment
Phase 3: Advanced Features (v0.3) - 8 weeks
Weeks 1-4: Intelligent Orchestration
- [ ] Machine learning integration for optimization
- [ ] Adaptive budget management
- [ ] Personalized orchestration strategies
- [ ] Advanced caching and prediction
Weeks 5-8: Enhanced Capabilities
- [ ] Streaming context delivery (HCS v2)
- [ ] Multi-modal orchestration support
- [ ] Advanced privacy-preserving techniques
- [ ] Federated orchestration capabilities
Success Criteria
System Performance:
- End-to-end P95 latency < 2 seconds
- System availability > 99.95%
- Budget utilization efficiency > 85%
- Context quality score > 0.8
- Provider failure tolerance > 99%
User Experience:
- User satisfaction rating > 4.3/5.0
- Intent classification accuracy > 92%
- Clarification request rate < 12%
- Task completion success rate > 88%
Operational Excellence:
- Security incident rate < 0.001%
- MTTR < 5 minutes for critical issues
- Deployment frequency: daily
- Change failure rate < 2%
Related Documentation
Component Specifications:
- ACS (Adaptive Context Scaling): acs/README.md — Cognitive budget management and context assembly
- ACS Technical Specification: acs/architecture.md — Comprehensive technical specification (28,000+ lines)
- CEO (Context/Execution Orchestrator): ceo/README.md — Intent interpretation and resource management
- CEO Technical Specification: ceo/architecture.md — Detailed cognitive architecture specification
- HCS (Hyperbolic Communication System): hcs/README.md — Transport and delivery coordination (Stage 2)
API & Integration:
- API Documentation: api/README.md — Complete API documentation suite
- Internal Communication: api/internal.md — CEO ↔ ACS ↔ HCS communication protocols
- Provider Integration: api/provider.md — Quick reference for provider integration
- Provider Specification: api/provider-specification.md — Comprehensive provider architecture
System Architecture:
- Contracts Registry: ../contracts/README.md — Canonical contracts and validation
- Evaluation Framework: ../evaluation/README.md — Quality assessment methodologies
- Overall System: ../README.md — Complete system architecture overview
- Architecture Standards: /ARCHITECTURE_DOCUMENTATION_STANDARDS.md — Documentation quality requirements
Status: Core architecture complete → Implementation in progress → Production target (v0.2)
Next Priority: Focus on Phase 1 implementation — CEO intent processing, ACS context assembly, and basic HCS delivery with comprehensive testing and monitoring frameworks.