Skip to content

Knowledge Graph Engine (L1 Component) ​

Structural relationship management system within the Noosphere architecture. Provides graph-based knowledge representation, complex traversal capabilities, and automated relationship discovery.

Architecture Overview ​

text
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              Graph Agent                     β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚            Neo4j Core                  β”‚  β”‚
β”‚  β”‚  β€’ Cypher Query Engine                 β”‚  β”‚
β”‚  β”‚  β€’ Relationship Indexing               β”‚  β”‚
β”‚  β”‚  β”‚  Graph Analytics (APOC)             β”‚  β”‚
β”‚  β”‚  β€’ Schema Management                   β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                  β”‚
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚             β”‚                 β”‚
    β–Ό             β–Ό                 β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚Entity   β”‚  β”‚Relation β”‚  β”‚   Quality       β”‚
β”‚Extract  β”‚  β”‚Detect   β”‚  β”‚  Assessment     β”‚
β”‚         β”‚  β”‚         β”‚  β”‚                 β”‚
β”‚β€’ NER    β”‚  β”‚β€’ NLP    β”‚  β”‚β€’ Edge Score     β”‚
β”‚β€’ Linkingβ”‚  β”‚β€’ Rules  β”‚  β”‚β€’ Validation     β”‚
β”‚β€’ Merge  β”‚  β”‚β€’ ML     β”‚  β”‚β€’ Feedback Loop  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Graph Schema Design ​

Core Node Types ​

cypher
// Document nodes
(:Document {
  id: "uuid",
  title: "string",
  type: "paper|code|documentation|article",
  url: "string",
  content_hash: "string",
  created_at: datetime,
  indexed_at: datetime,
  metadata: {
    authors: ["author_ids"],
    publication_date: date,
    venue: "string",
    doi: "string",
    language: "string"
  }
})

// Concept nodes
(:Concept {
  id: "uuid", 
  name: "string",
  type: "technology|methodology|theory|domain",
  description: "string",
  canonical_form: "string",
  aliases: ["string"],
  confidence_score: float,
  usage_frequency: int,
  last_updated: datetime
})

// Author nodes
(:Author {
  id: "uuid",
  name: "string", 
  canonical_name: "string",
  aliases: ["string"],
  orcid: "string",
  affiliations: ["institution_ids"],
  expertise_areas: ["concept_ids"],
  h_index: int,
  publication_count: int
})

// Institution nodes
(:Institution {
  id: "uuid",
  name: "string",
  type: "university|company|research_lab",
  country: "string",
  domain: "string",
  founded: date,
  research_areas: ["concept_ids"]
})

// Code Repository nodes
(:Repository {
  id: "uuid",
  name: "string",
  url: "string", 
  language: "string",
  stars: int,
  forks: int,
  topics: ["string"],
  concepts: ["concept_ids"],
  last_commit: datetime
})

Relationship Types and Properties ​

cypher
// Document relationships
(:Document)-[:AUTHORED_BY {role: "primary|secondary", order: int}]->(:Author)
(:Document)-[:PUBLISHED_IN {venue: "string", year: int}]->(:Venue)
(:Document)-[:CITES {context: "string", frequency: int, sentiment: "positive|neutral|negative"}]->(:Document)
(:Document)-[:CONTAINS {tf_idf: float, prominence: float, context: "string"}]->(:Concept)
(:Document)-[:IMPLEMENTS {description: "string", completeness: float}]->(:Repository)

// Concept relationships  
(:Concept)-[:RELATED_TO {
  strength: float,         // 0.0-1.0 relationship strength
  type: "semantic|hierarchical|causal|temporal",
  evidence_count: int,     // supporting documents
  confidence: float,       // ML confidence score
  created_by: "auto|manual|hybrid",
  last_validated: datetime
}]->(:Concept)

(:Concept)-[:IS_SUBCONCEPT_OF {specificity: float}]->(:Concept)
(:Concept)-[:EVOLVES_INTO {timespan: "string", evidence: ["doc_ids"]}]->(:Concept)
(:Concept)-[:REQUIRES {dependency_type: "prerequisite|component|tool"}]->(:Concept)

// Author relationships
(:Author)-[:COLLABORATES_WITH {
  frequency: int,
  papers_count: int, 
  relationship_strength: float,
  domains: ["concept_ids"]
}]->(:Author)

(:Author)-[:AFFILIATED_WITH {
  start_date: date,
  end_date: date,
  role: "string",
  current: boolean
}]->(:Institution)

// Dynamic relationships (time-aware)
(:Concept)-[:POPULARITY_OVER_TIME {
  year: int,
  paper_count: int,
  citation_count: int,
  trend: "rising|stable|declining"
}]->(:TimeSlice)

Query Patterns and Optimization ​

Core Query Types ​

1. Concept Exploration

cypher
// Find related concepts with evidence
MATCH (c1:Concept {name: "transformer architecture"})
  -[r:RELATED_TO]-(c2:Concept)
MATCH (doc:Document)-[:CONTAINS]->(c1)
MATCH (doc)-[:CONTAINS]->(c2)
RETURN c2.name, 
       r.strength,
       r.confidence,
       count(doc) as supporting_docs
ORDER BY r.strength DESC, supporting_docs DESC
LIMIT 20;

// Multi-hop concept traversal
MATCH path = (start:Concept {name: "neural networks"})
  -[:RELATED_TO*2..4]-(end:Concept)
WHERE end.name CONTAINS "memory"
RETURN path,
       reduce(score = 1.0, rel in relationships(path) | score * rel.strength) as path_score
ORDER BY path_score DESC
LIMIT 10;

2. Research Trend Analysis

cypher
// Concept evolution over time
MATCH (c:Concept {name: "attention mechanism"})
  -[:POPULARITY_OVER_TIME]->(ts:TimeSlice)
MATCH (docs:Document)-[:CONTAINS]->(c)
WHERE docs.metadata.publication_date.year = ts.year
RETURN ts.year,
       ts.paper_count,
       ts.citation_count,
       ts.trend,
       avg(docs.citation_count) as avg_impact
ORDER BY ts.year;

// Emerging research areas
MATCH (c:Concept)-[pt:POPULARITY_OVER_TIME]->(ts:TimeSlice)
WHERE ts.year >= 2022 AND pt.trend = "rising"
WITH c, sum(pt.paper_count) as total_papers, 
     sum(pt.citation_count) as total_citations
WHERE total_papers >= 10
RETURN c.name, 
       c.description,
       total_papers,
       total_citations,
       (total_citations * 1.0 / total_papers) as avg_impact
ORDER BY avg_impact DESC;

3. Author and Collaboration Networks

cypher
// Find expert authors for a concept
MATCH (c:Concept {name: "graph neural networks"})
  <-[:CONTAINS]-(doc:Document)
  <-[:AUTHORED_BY]-(a:Author)
WITH a, count(doc) as paper_count, 
     sum(doc.citation_count) as total_citations
WHERE paper_count >= 3
RETURN a.name,
       a.canonical_name,
       paper_count,
       total_citations,
       (total_citations * 1.0 / paper_count) as avg_impact,
       a.h_index
ORDER BY avg_impact DESC, paper_count DESC;

// Collaboration network analysis
MATCH (a1:Author)-[collab:COLLABORATES_WITH]-(a2:Author)
WHERE collab.frequency >= 3
MATCH (a1)-[:AUTHORED_BY]->(doc:Document)<-[:AUTHORED_BY]-(a2)
MATCH (doc)-[:CONTAINS]->(c:Concept {name: "machine learning"})
RETURN a1.name, a2.name,
       collab.frequency,
       collab.relationship_strength,
       collect(DISTINCT c.name) as shared_concepts
ORDER BY collab.relationship_strength DESC;

4. Research Gap Identification

cypher
// Find under-connected concepts (potential research gaps)
MATCH (c:Concept)
WHERE c.usage_frequency >= 10
WITH c, size((c)-[:RELATED_TO]-()) as connection_count
WHERE connection_count < 5
MATCH (c)<-[:CONTAINS]-(doc:Document)
RETURN c.name,
       c.description,
       connection_count,
       count(doc) as document_count,
       avg(doc.citation_count) as avg_citations
ORDER BY document_count DESC, avg_citations DESC;

// Cross-domain connection opportunities  
MATCH (c1:Concept)-[:RELATED_TO {type: "semantic"}]-(bridge:Concept)-[:RELATED_TO {type: "semantic"}]-(c2:Concept)
WHERE c1.type <> c2.type
AND NOT (c1)-[:RELATED_TO]-(c2)
WITH c1, c2, bridge, 
     size((c1)<-[:CONTAINS]-()) as c1_usage,
     size((c2)<-[:CONTAINS]-()) as c2_usage
WHERE c1_usage >= 5 AND c2_usage >= 5
RETURN c1.name, c1.type,
       c2.name, c2.type,
       bridge.name as connecting_concept,
       c1_usage, c2_usage
ORDER BY (c1_usage + c2_usage) DESC;

Automated Relationship Discovery ​

Entity Extraction Pipeline ​

python
class GraphEntityExtractor:
    def extract_entities(self, document: Document) -> List[Entity]:
        """Multi-stage entity extraction and linking"""
        
        # Stage 1: Named Entity Recognition
        raw_entities = self.ner_pipeline(document.content)
        
        # Stage 2: Concept extraction using domain models
        concepts = self.concept_extractor(document.content, domain=document.domain)
        
        # Stage 3: Entity linking and canonicalization
        linked_entities = self.entity_linker(raw_entities + concepts)
        
        # Stage 4: Disambiguation and merging
        canonical_entities = self.disambiguate(linked_entities)
        
        return canonical_entities
    
    def extract_relationships(self, 
                            document: Document, 
                            entities: List[Entity]) -> List[Relationship]:
        """Automated relationship extraction"""
        
        relationships = []
        
        # Syntactic relationships (dependency parsing)
        syntactic_rels = self.dependency_parser(document.content, entities)
        relationships.extend(syntactic_rels)
        
        # Semantic relationships (ML model)
        semantic_rels = self.semantic_relation_model(document.content, entities)
        relationships.extend(semantic_rels)
        
        # Pattern-based relationships (rule engine)
        pattern_rels = self.pattern_engine(document.content, entities)
        relationships.extend(pattern_rels)
        
        # Cross-document relationships (citation analysis)
        if document.citations:
            citation_rels = self.citation_analyzer(document, entities)
            relationships.extend(citation_rels)
            
        return self.deduplicate_relationships(relationships)

Relationship Quality Assessment ​

python
class RelationshipQualityAssessor:
    def assess_edge_quality(self, 
                           relationship: Relationship,
                           evidence: Evidence) -> QualityScore:
        """Multi-dimensional relationship quality assessment"""
        
        scores = {}
        
        # Evidence strength (number of supporting documents)
        scores['evidence_strength'] = self.calculate_evidence_strength(evidence)
        
        # Source credibility (quality of supporting documents)
        scores['source_credibility'] = self.assess_source_quality(evidence.sources)
        
        # Consistency (agreement across sources)
        scores['consistency'] = self.measure_consistency(evidence)
        
        # Semantic coherence (NLP-based validation)
        scores['semantic_coherence'] = self.validate_semantic_coherence(relationship)
        
        # Temporal stability (relationship persistence over time)
        scores['temporal_stability'] = self.assess_temporal_stability(relationship)
        
        # Expert validation (human feedback when available)
        if evidence.expert_feedback:
            scores['expert_validation'] = evidence.expert_feedback.score
            
        # Composite score calculation
        weights = {
            'evidence_strength': 0.25,
            'source_credibility': 0.20,
            'consistency': 0.20,
            'semantic_coherence': 0.15,
            'temporal_stability': 0.15,
            'expert_validation': 0.05
        }
        
        composite_score = sum(
            scores.get(dimension, 0.0) * weight 
            for dimension, weight in weights.items()
        )
        
        return QualityScore(
            composite=composite_score,
            dimensions=scores,
            confidence=self.calculate_confidence(scores),
            explanation=self.generate_explanation(scores)
        )
    
    def quality_feedback_loop(self, user_feedback: UserFeedback):
        """Incorporate user feedback to improve quality assessment"""
        
        # Update quality models based on user corrections
        if user_feedback.type == "relationship_correction":
            self.update_relationship_model(user_feedback)
            
        # Retrain quality assessment weights
        if user_feedback.type == "quality_rating":
            self.retrain_quality_weights(user_feedback)
            
        # Update entity linking confidence
        if user_feedback.type == "entity_correction":
            self.update_entity_linker(user_feedback)

Graph Analytics and Insights ​

Community Detection ​

cypher
// Research community identification using Louvain algorithm
CALL gds.louvain.stream('research_graph', {
  relationshipTypes: ['COLLABORATES_WITH', 'CITES', 'RELATED_TO'],
  relationshipWeightProperty: 'strength'
})
YIELD nodeId, communityId
MATCH (n) WHERE id(n) = nodeId
WITH communityId, collect(n) as community_members
WHERE size(community_members) >= 5
RETURN communityId,
       [member IN community_members WHERE 'Author' IN labels(member) | member.name] as authors,
       [member IN community_members WHERE 'Concept' IN labels(member) | member.name] as concepts,
       size(community_members) as community_size
ORDER BY community_size DESC;

Centrality Analysis ​

cypher
// Identify key concepts using PageRank
CALL gds.pageRank.stream('concept_graph', {
  relationshipTypes: ['RELATED_TO'],
  relationshipWeightProperty: 'strength',
  dampingFactor: 0.85
})
YIELD nodeId, score
MATCH (c:Concept) WHERE id(c) = nodeId
RETURN c.name, 
       c.description,
       score as importance_score,
       c.usage_frequency,
       size((c)-[:RELATED_TO]-()) as connection_count
ORDER BY score DESC
LIMIT 20;

// Identify bridge concepts (high betweenness centrality)
CALL gds.betweenness.stream('concept_graph', {
  relationshipTypes: ['RELATED_TO']
})
YIELD nodeId, score
MATCH (c:Concept) WHERE id(c) = nodeId
WHERE score > 0
RETURN c.name,
       c.type, 
       score as bridge_importance,
       c.usage_frequency
ORDER BY score DESC
LIMIT 15;

Temporal Evolution Tracking ​

cypher
// Track concept evolution patterns
MATCH (old:Concept)-[evolves:EVOLVES_INTO]->(new:Concept)
MATCH (old)<-[:CONTAINS]-(old_docs:Document),
      (new)<-[:CONTAINS]-(new_docs:Document)
WITH old, new, evolves,
     avg(old_docs.metadata.publication_date.year) as old_period,
     avg(new_docs.metadata.publication_date.year) as new_period,
     count(old_docs) as old_usage,
     count(new_docs) as new_usage
RETURN old.name as original_concept,
       new.name as evolved_concept,
       (new_period - old_period) as evolution_years,
       old_usage, new_usage,
       (new_usage * 1.0 / old_usage) as adoption_ratio,
       evolves.evidence as supporting_evidence
ORDER BY adoption_ratio DESC;

Hybrid Query Processing ​

python
class HybridGraphVectorSearch:
    def search(self, query: str, context: SearchContext) -> SearchResults:
        """Combine graph traversal with vector similarity"""
        
        # Stage 1: Vector similarity for initial candidates
        vector_candidates = self.vector_search.search(query, top_k=100)
        
        # Stage 2: Graph expansion for related concepts
        graph_expansion = []
        for candidate in vector_candidates[:20]:
            related = self.graph_agent.find_related(
                candidate.entity_id, 
                max_hops=2,
                min_relationship_strength=0.3
            )
            graph_expansion.extend(related)
            
        # Stage 3: Re-ranking with graph signals
        combined_candidates = vector_candidates + graph_expansion
        reranked = self.rerank_with_graph_features(
            combined_candidates,
            query,
            context
        )
        
        return SearchResults(
            results=reranked,
            explanation=self.generate_explanation(query, reranked)
        )
    
    def rerank_with_graph_features(self, 
                                  candidates: List[Candidate],
                                  query: str,
                                  context: SearchContext) -> List[Candidate]:
        """Enhance ranking with graph-based features"""
        
        for candidate in candidates:
            # Graph centrality features
            candidate.features['pagerank'] = self.get_pagerank_score(candidate.entity_id)
            candidate.features['betweenness'] = self.get_betweenness_score(candidate.entity_id)
            
            # Relationship density features
            candidate.features['connection_count'] = self.get_connection_count(candidate.entity_id)
            candidate.features['relationship_strength'] = self.get_avg_relationship_strength(candidate.entity_id)
            
            # Context relevance features
            if context.user_history:
                candidate.features['user_context_similarity'] = self.calculate_user_context_similarity(
                    candidate.entity_id, context.user_history
                )
                
        # Re-ranking with combined vector + graph features
        return self.ml_reranker.rerank(candidates, query, context)

Performance and Scalability ​

Indexing Strategy ​

cypher
// Core indexes for performance
CREATE INDEX concept_name FOR (c:Concept) ON (c.name);
CREATE INDEX concept_canonical FOR (c:Concept) ON (c.canonical_form);
CREATE INDEX document_hash FOR (d:Document) ON (d.content_hash);
CREATE INDEX author_canonical FOR (a:Author) ON (a.canonical_name);
CREATE FULLTEXT INDEX document_content FOR (d:Document) ON EACH [d.title, d.abstract];

// Relationship indexes
CREATE INDEX relationship_strength FOR ()-[r:RELATED_TO]-() ON (r.strength);
CREATE INDEX relationship_type FOR ()-[r:RELATED_TO]-() ON (r.type);
CREATE INDEX collaboration_frequency FOR ()-[r:COLLABORATES_WITH]-() ON (r.frequency);

Partitioning and Sharding ​

python
class GraphPartitionStrategy:
    def partition_by_domain(self, graph: Neo4jGraph) -> List[Partition]:
        """Partition graph by research domains for scalability"""
        
        domains = self.identify_domains(graph)
        partitions = []
        
        for domain in domains:
            partition = Partition(
                domain=domain,
                nodes=self.extract_domain_nodes(graph, domain),
                relationships=self.extract_domain_relationships(graph, domain),
                cross_partition_edges=self.identify_cross_domain_edges(graph, domain)
            )
            partitions.append(partition)
            
        return partitions
    
    def optimize_query_routing(self, query: CypherQuery, partitions: List[Partition]) -> QueryPlan:
        """Route queries to minimize cross-partition operations"""
        
        relevant_partitions = self.identify_relevant_partitions(query, partitions)
        
        if len(relevant_partitions) == 1:
            return QueryPlan(type="single_partition", target=relevant_partitions[0])
        else:
            return QueryPlan(
                type="multi_partition",
                targets=relevant_partitions,
                coordination_strategy="scatter_gather"
            )

## Provider Abstraction Layer

### Graph Database Interface

```python
from abc import ABC, abstractmethod
from typing import Protocol, List, Dict, Any, Optional, Union
from dataclasses import dataclass

@dataclass
class GraphNode:
    """Universal graph node representation"""
    id: str
    labels: List[str]
    properties: Dict[str, Any]

@dataclass
class GraphRelationship:
    """Universal graph relationship representation"""
    id: str
    type: str
    start_node_id: str
    end_node_id: str
    properties: Dict[str, Any]

@dataclass
class GraphQuery:
    """Universal graph query representation"""
    query_type: str  # "cypher", "gremlin", "sql", "graphql"
    query_text: str
    parameters: Dict[str, Any]
    timeout_ms: Optional[int] = None

class GraphDatabaseProvider(Protocol):
    """Abstract interface for graph database providers"""
    
    @abstractmethod
    def connect(self, connection_string: str, credentials: Dict[str, str]) -> bool:
        """Establish connection to graph database"""
        pass
    
    @abstractmethod
    def execute_query(self, query: GraphQuery) -> List[Dict[str, Any]]:
        """Execute a graph query and return results"""
        pass
    
    @abstractmethod
    def create_node(self, node: GraphNode) -> str:
        """Create a node and return its ID"""
        pass
    
    @abstractmethod
    def create_relationship(self, relationship: GraphRelationship) -> str:
        """Create a relationship and return its ID"""
        pass
    
    @abstractmethod
    def update_node(self, node_id: str, properties: Dict[str, Any]) -> bool:
        """Update node properties"""
        pass
    
    @abstractmethod
    def delete_node(self, node_id: str) -> bool:
        """Delete a node and its relationships"""
        pass
    
    @abstractmethod
    def find_neighbors(self, 
                      node_id: str, 
                      relationship_types: List[str] = None,
                      max_depth: int = 1) -> List[GraphNode]:
        """Find neighboring nodes"""
        pass
    
    @abstractmethod
    def get_schema(self) -> Dict[str, Any]:
        """Get database schema information"""
        pass
    
    @abstractmethod
    def create_index(self, label: str, property_name: str) -> bool:
        """Create an index for performance"""
        pass
    
    @abstractmethod
    def get_statistics(self) -> Dict[str, Any]:
        """Get database statistics"""
        pass

class Neo4jProvider(GraphDatabaseProvider):
    """Neo4j implementation of graph database provider"""
    
    def __init__(self, config: Dict[str, Any]):
        self.config = config
        self.driver = None
        
    def connect(self, connection_string: str, credentials: Dict[str, str]) -> bool:
        """Connect to Neo4j database"""
        try:
            from neo4j import GraphDatabase
            
            self.driver = GraphDatabase.driver(
                connection_string,
                auth=(credentials['username'], credentials['password']),
                **self.config.get('driver_config', {})
            )
            
            # Test connection
            with self.driver.session() as session:
                result = session.run("RETURN 1 as test")
                return result.single()['test'] == 1
                
        except Exception as e:
            print(f"Neo4j connection failed: `{e}`")
            return False
    
    def execute_query(self, query: GraphQuery) -> List[Dict[str, Any]]:
        """Execute Cypher query"""
        if query.query_type != "cypher":
            raise ValueError("Neo4j only supports Cypher queries")
        
        with self.driver.session() as session:
            result = session.run(
                query.query_text, 
                query.parameters,
                timeout=query.timeout_ms / 1000 if query.timeout_ms else None
            )
            
            return [record.data() for record in result]
    
    def create_node(self, node: GraphNode) -> str:
        """Create node in Neo4j"""
        labels_str = ":".join(node.labels)
        props_str = ", ".join([f"{k}: ${k}" for k in node.properties.keys()])
        
        cypher = f"""
        CREATE (n:`{labels_str}` {{{props_str}}})
        RETURN id(n) as node_id
        """
        
        result = self.execute_query(GraphQuery(
            query_type="cypher",
            query_text=cypher,
            parameters=node.properties
        ))
        
        return str(result[0]['node_id'])
    
    def create_relationship(self, relationship: GraphRelationship) -> str:
        """Create relationship in Neo4j"""
        props_str = ", ".join([f"{k}: ${k}" for k in relationship.properties.keys()])
        
        cypher = f"""
        MATCH (a) WHERE id(a) = $start_id
        MATCH (b) WHERE id(b) = $end_id
        CREATE (a)-[r:`{relationship.type}` {{{props_str}}}]->(b)
        RETURN id(r) as rel_id
        """
        
        params = relationship.properties.copy()
        params['start_id'] = int(relationship.start_node_id)
        params['end_id'] = int(relationship.end_node_id)
        
        result = self.execute_query(GraphQuery(
            query_type="cypher",
            query_text=cypher,
            parameters=params
        ))
        
        return str(result[0]['rel_id'])
    
    def find_neighbors(self, 
                      node_id: str, 
                      relationship_types: List[str] = None,
                      max_depth: int = 1) -> List[GraphNode]:
        """Find neighbors in Neo4j"""
        
        rel_filter = ""
        if relationship_types:
            rel_types = "|".join(relationship_types)
            rel_filter = f":`{rel_types}`"
        
        cypher = f"""
        MATCH (start)-[r{rel_filter}*1..{max_depth}]-(neighbor)
        WHERE id(start) = $node_id
        RETURN DISTINCT id(neighbor) as id, labels(neighbor) as labels, properties(neighbor) as props
        """
        
        result = self.execute_query(GraphQuery(
            query_type="cypher",
            query_text=cypher,
            parameters={"node_id": int(node_id)}
        ))
        
        neighbors = []
        for record in result:
            neighbors.append(GraphNode(
                id=str(record['id']),
                labels=record['labels'],
                properties=record['props']
            ))
        
        return neighbors
    
    def get_statistics(self) -> Dict[str, Any]:
        """Get Neo4j database statistics"""
        cypher = """
        MATCH (n) 
        OPTIONAL MATCH ()-[r]->() 
        RETURN count(DISTINCT n) as node_count, count(r) as relationship_count
        """
        
        result = self.execute_query(GraphQuery(
            query_type="cypher",
            query_text=cypher,
            parameters={}
        ))
        
        return {
            'nodes': result[0]['node_count'],
            'relationships': result[0]['relationship_count'],
            'provider': 'neo4j'
        }

class ArangoDBProvider(GraphDatabaseProvider):
    """ArangoDB implementation of graph database provider"""
    
    def __init__(self, config: Dict[str, Any]):
        self.config = config
        self.client = None
        self.database = None
        
    def connect(self, connection_string: str, credentials: Dict[str, str]) -> bool:
        """Connect to ArangoDB"""
        try:
            from arango import ArangoClient
            
            self.client = ArangoClient(hosts=connection_string)
            self.database = self.client.db(
                credentials.get('database', '_system'),
                username=credentials['username'],
                password=credentials['password']
            )
            
            # Test connection
            return self.database.version() is not None
            
        except Exception as e:
            print(f"ArangoDB connection failed: `{e}`")
            return False
    
    def execute_query(self, query: GraphQuery) -> List[Dict[str, Any]]:
        """Execute AQL query"""
        if query.query_type not in ["aql", "graphql"]:
            raise ValueError("ArangoDB supports AQL and GraphQL queries")
        
        cursor = self.database.aql.execute(
            query.query_text,
            bind_vars=query.parameters,
            ttl=query.timeout_ms / 1000 if query.timeout_ms else 60
        )
        
        return list(cursor)
    
    # Implement other abstract methods for ArangoDB...

class PostgreSQLGraphProvider(GraphDatabaseProvider):
    """PostgreSQL with graph extensions (AGE) implementation"""
    
    def __init__(self, config: Dict[str, Any]):
        self.config = config
        self.connection = None
        
    def connect(self, connection_string: str, credentials: Dict[str, str]) -> bool:
        """Connect to PostgreSQL with graph extensions"""
        try:
            import psycopg2
            from psycopg2.extras import RealDictCursor
            
            self.connection = psycopg2.connect(
                connection_string,
                cursor_factory=RealDictCursor
            )
            
            # Load AGE extension if available
            with self.connection.cursor() as cursor:
                cursor.execute("CREATE EXTENSION IF NOT EXISTS age;")
                cursor.execute("LOAD 'age';")
                
            self.connection.commit()
            return True
            
        except Exception as e:
            print(f"PostgreSQL graph connection failed: `{e}`")
            return False
    
    def execute_query(self, query: GraphQuery) -> List[Dict[str, Any]]:
        """Execute SQL/Cypher hybrid query for PostgreSQL AGE"""
        if query.query_type not in ["sql", "cypher"]:
            raise ValueError("PostgreSQL graph supports SQL and Cypher-like queries")
        
        with self.connection.cursor() as cursor:
            cursor.execute(query.query_text, query.parameters)
            return cursor.fetchall()
    
    # Implement other abstract methods for PostgreSQL...

class GraphProviderFactory:
    """Factory for creating graph database providers"""
    
    _providers = {
        'neo4j': Neo4jProvider,
        'arangodb': ArangoDBProvider,
        'postgresql': PostgreSQLGraphProvider,
        'memgraph': None,  # Could add MemGraph support
        'janusgraph': None,  # Could add JanusGraph support
        'dgraph': None,  # Could add DGraph support
    }
    
    @classmethod
    def create_provider(cls, provider_type: str, config: Dict[str, Any]) -> GraphDatabaseProvider:
        """Create a graph database provider"""
        if provider_type not in cls._providers:
            raise ValueError(f"Unknown graph provider: `{provider_type}`")
        
        provider_class = cls._providers[provider_type]
        if provider_class is None:
            raise NotImplementedError(f"Provider `{provider_type}` not yet implemented")
        
        return provider_class(config)
    
    @classmethod
    def get_available_providers(cls) -> List[str]:
        """Get list of available providers"""
        return [k for k, v in cls._providers.items() if v is not None]

### Graph Provider Configuration

```python
@dataclass
class GraphDatabaseConfig:
    """Configuration for graph database providers"""
    provider_type: str
    connection_string: str
    credentials: Dict[str, str]
    provider_config: Dict[str, Any]
    
    # Performance settings
    connection_pool_size: int = 10
    query_timeout_ms: int = 30000
    retry_attempts: int = 3
    
    # Feature flags
    enable_transactions: bool = True
    enable_schema_validation: bool = True
    enable_query_caching: bool = True

class GraphDatabaseManager:
    """High-level manager for graph database operations"""
    
    def __init__(self, config: GraphDatabaseConfig):
        self.config = config
        self.provider = GraphProviderFactory.create_provider(
            config.provider_type,
            config.provider_config
        )
        self.connected = False
        
    def initialize(self) -> bool:
        """Initialize database connection and setup"""
        try:
            # Connect to database
            self.connected = self.provider.connect(
                self.config.connection_string,
                self.config.credentials
            )
            
            if not self.connected:
                return False
            
            # Create indexes for performance
            self._create_performance_indexes()
            
            # Set up schema if validation is enabled
            if self.config.enable_schema_validation:
                self._setup_schema_validation()
            
            return True
            
        except Exception as e:
            print(f"Database initialization failed: {e}")
            return False
    
    def _create_performance_indexes(self):
        """Create standard indexes for performance"""
        try:
            # Core concept indexes
            self.provider.create_index("Concept", "name")
            self.provider.create_index("Concept", "canonical_form")
            
            # Document indexes
            self.provider.create_index("Document", "content_hash")
            self.provider.create_index("Document", "title")
            
            # Author indexes
            self.provider.create_index("Author", "canonical_name")
            self.provider.create_index("Author", "orcid")
            
        except Exception as e:
            print(f"Index creation failed: {e}")
    
    def execute_with_retry(self, query: GraphQuery) -> List[Dict[str, Any]]:
        """Execute query with retry logic"""
        last_error = None
        
        for attempt in range(self.config.retry_attempts):
            try:
                return self.provider.execute_query(query)
            except Exception as e:
                last_error = e
                if attempt < self.config.retry_attempts - 1:
                    time.sleep(2 ** attempt)  # Exponential backoff
        
        raise last_error

Usage Examples ​

Multi-Provider Setup ​

python
# Configure different providers for different use cases
configs = {
    'production': GraphDatabaseConfig(
        provider_type='neo4j',
        connection_string='neo4j://production-cluster:7687',
        credentials={'username': 'neo4j', 'password': 'secure-password'},
        provider_config={
            'driver_config': {
                'max_connection_pool_size': 50,
                'connection_acquisition_timeout': 60
            }
        }
    ),
    'development': GraphDatabaseConfig(
        provider_type='postgresql',
        connection_string='postgresql://localhost:5432/dev_graph',
        credentials={'username': 'dev_user', 'password': 'dev_pass'},
        provider_config={}
    ),
    'research': GraphDatabaseConfig(
        provider_type='arangodb',
        connection_string='http://research-cluster:8529',
        credentials={'username': 'researcher', 'password': 'research-key'},
        provider_config={}
    )
}

# Initialize managers
managers = {}
for env, config in configs.items():
    manager = GraphDatabaseManager(config)
    if manager.initialize():
        managers[env] = manager
        print(f"Initialized {env} graph database with {config.provider_type}")

# Use appropriate manager based on context
production_manager = managers['production']
research_manager = managers['research']

# Execute queries against different backends transparently
concept_query = GraphQuery(
    query_type="cypher",
    query_text="""
    MATCH (c:Concept)-[:RELATED_TO]-(related:Concept)
    WHERE c.name = $concept_name
    RETURN related.name, related.description
    LIMIT 10
    """,
    parameters={"concept_name": "machine learning"}
)

# Same query works across all providers
prod_results = production_manager.execute_with_retry(concept_query)
research_results = research_manager.execute_with_retry(concept_query)

Explore related documentation:

  • Noosphere Layer - README - πŸ“– Noosphere Layer - README | Step-by-step tutorial for Mnemoverse AI memory engine. Learn spatial memory concepts with practical examples.
  • AI Staff - πŸ“– AI Staff | Step-by-step tutorial for Mnemoverse AI memory engine. Learn spatial memory concepts with practical examples.
  • Architecture - πŸ“– Architecture | Step-by-step tutorial for Mnemoverse AI memory engine. Learn spatial memory concepts with practical examples.
  • Hyperbolic Space - πŸ“– Hyperbolic Space | Step-by-step tutorial for Mnemoverse AI memory engine. Learn spatial memory concepts with practical examples.
  • MCP Integration - πŸ“– MCP Integration | Step-by-step tutorial for Mnemoverse AI memory engine. Learn spatial memory concepts with practical examples.