Provider API Specification: L1/L2/L4 Knowledge Layer Integration β
Abstract: The Provider API serves as the unified integration layer between the ACS (Adaptive Context Scaling) orchestrator and the three knowledge layers of Mnemoverse: L1 (Noosphere), L2 (Project Library), and L4 (Experience). This specification defines a comprehensive, extensible API that enables intelligent knowledge retrieval, quality assessment, and performance optimization across heterogeneous knowledge sources.
Contract summary (v0)
- Request schema:
provider_request.v0.json
- Response schema:
provider_response.v0.json
- Quick reference:
provider.md
- Privacy: providers MUST honor
privacy_mode
(allow|redact|block)- Deadlines:
deadline_ms
per provider; partial responses are acceptable with warnings
Table of Contents β
- Executive Summary
- API Architecture Philosophy
- Core Provider Interface
- Layer-Specific Implementations
- Quality & Metadata Framework
- Performance Optimization
- Error Handling & Resilience
- Security & Privacy
- Monitoring & Observability
- Future Extensions
Executive Summary β
The Knowledge Integration Challenge β
Mnemoverse's three knowledge layers (L1, L2, L4) each serve distinct cognitive functions with different data models, query patterns, and performance characteristics:
- L1 (Noosphere): Global knowledge with hyperbolic embeddings and multi-method search
- L2 (Project Library): Project-specific knowledge with graph relationships and relevance scoring
- L4 (Experience): Historical interaction patterns with temporal relationships and outcome tracking
The Provider API abstracts these differences while preserving layer-specific optimizations, enabling the ACS orchestrator to treat all knowledge sources uniformly while leveraging their unique strengths.
Key Design Principles β
- Unified Interface: Single API contract across all knowledge layers
- Layer Optimization: Preserve layer-specific performance characteristics
- Quality Transparency: Comprehensive metadata for informed decision-making
- Graceful Degradation: Robust handling of partial failures and timeouts
- Extensibility: Support for future knowledge layer types and capabilities
- Performance Focus: Sub-200ms response targets with intelligent caching
API Architecture Philosophy β
Cognitive Abstraction Model β
The Provider API is designed around cognitive abstraction rather than technical abstraction:
interface CognitiveQuery {
// What is the user trying to understand?
cognitive_intent: CognitiveIntent;
// What level of detail do they need?
detail_requirements: DetailRequirements;
// What are their constraints?
resource_constraints: ResourceConstraints;
// What context influences interpretation?
contextual_factors: ContextualFactors;
}
interface CognitiveResponse {
// Knowledge fragments organized by cognitive utility
knowledge_fragments: CognitiveFragment[];
// Quality assessment for decision-making
quality_assessment: QualityMetrics;
// Metadata for optimization and learning
retrieval_metadata: RetrievalMetadata;
// Recommendations for follow-up queries
exploration_suggestions: ExplorationSuggestion[];
}
This cognitive focus ensures that the API serves human understanding rather than just technical data retrieval.
Layered Architecture Pattern β
interface ProviderArchitecture {
// Core abstraction layer - unified interface
core_interface: CoreProviderInterface;
// Layer adaptation layer - converts between unified and layer-specific formats
adaptation_layer: {
l1_adapter: NoosphereAdapter;
l2_adapter: ProjectLibraryAdapter;
l4_adapter: ExperienceAdapter;
};
// Quality assurance layer - validates and enriches responses
quality_layer: QualityAssuranceLayer;
// Performance optimization layer - caching, batching, monitoring
optimization_layer: PerformanceOptimizationLayer;
// Integration layer - handles ACS orchestrator communication
integration_layer: ACSIntegrationLayer;
}
Core Provider Interface β
Primary Search Interface β
interface KnowledgeProvider {
// Primary search method - cognitive query to knowledge fragments
search(query: CognitiveSearchQuery): Promise<CognitiveSearchResponse>;
// Batch search for optimization
searchBatch(queries: CognitiveSearchQuery[]): Promise<CognitiveSearchResponse[]>;
// Provider capabilities and metadata
getCapabilities(): ProviderCapabilities;
// Health and performance monitoring
healthCheck(): Promise<ProviderHealthStatus>;
// Real-time performance metrics
getPerformanceMetrics(): ProviderPerformanceMetrics;
}
interface CognitiveSearchQuery {
// Unique query identifier for correlation
query_id: string;
// Core cognitive intent
intent: {
primary_goal: "understand" | "implement" | "debug" | "optimize" | "explore";
domain_context: DomainContext;
complexity_level: "basic" | "intermediate" | "advanced" | "expert";
temporal_context: "immediate" | "planning" | "historical";
};
// Search parameters
search_vector: number[]; // Semantic embedding of the query
search_text?: string; // Optional textual query for hybrid search
search_filters: SearchFilters; // Constraints and filters
// Quality and resource requirements
requirements: {
min_quality_threshold: number; // 0.0-1.0, minimum acceptable quality
max_results: number; // Maximum number of fragments to return
timeout_ms: number; // Maximum time to spend on search
freshness_preference: number; // 0.0-1.0, preference for recent vs authoritative
diversity_requirement: number; // 0.0-1.0, how diverse should results be
};
// Level of detail preferences
detail_preferences: {
lod_distribution: {
macro: number; // 0.0-1.0, preference for high-level insights
micro: number; // 0.0-1.0, preference for detailed explanations
atomic: number; // 0.0-1.0, preference for specific facts/code
};
explanation_depth: "minimal" | "standard" | "comprehensive";
example_preference: "none" | "few" | "many";
};
// Contextual factors
context: {
user_expertise_level: ExpertiseLevel;
project_context?: ProjectContext;
session_history?: QueryHistory;
user_preferences?: UserPreferences;
};
}
interface CognitiveSearchResponse {
// Response metadata
response_id: string;
query_id: string;
provider_id: string;
processed_at: Date;
// Knowledge fragments
fragments: CognitiveFragment[];
// Aggregated quality metrics
overall_quality: {
relevance_score: number; // 0.0-1.0, how relevant to the query
confidence_score: number; // 0.0-1.0, provider confidence in results
completeness_score: number; // 0.0-1.0, how complete the response is
freshness_score: number; // 0.0-1.0, how recent/up-to-date
authority_score: number; // 0.0-1.0, credibility of sources
};
// Performance metrics
performance: {
search_time_ms: number;
total_candidates_considered: number;
cache_hit_rate: number;
resource_utilization: ResourceUtilization;
};
// Response metadata
metadata: {
search_strategy_used: string; // Which search method was most effective
partial_results: boolean; // True if timeout forced partial results
fallback_activated: boolean; // True if fallback strategies were used
warning_messages: string[]; // Any warnings about the response quality
suggested_refinements: string[]; // Suggestions for improving the query
};
// Follow-up opportunities
exploration_paths: ExplorationPath[];
}
Knowledge Fragment Structure β
interface CognitiveFragment {
// Fragment identification
fragment_id: string;
source_layer: "L1" | "L2" | "L4";
provider_id: string;
// Content
content: {
primary_content: string; // Main textual content
content_type: "text" | "code" | "diagram" | "data" | "mixed";
lod_level: "macro" | "micro" | "atomic";
estimated_reading_time_seconds: number;
};
// Semantic information
semantics: {
key_concepts: Concept[]; // Primary concepts covered
relationships: ConceptRelationship[]; // How concepts relate
domain_tags: string[]; // Domain/technology tags
intent_alignment: IntentAlignment; // How well this serves user intent
};
// Quality metrics
quality: {
relevance_score: number; // 0.0-1.0, relevance to query
quality_score: number; // 0.0-1.0, overall content quality
authority_score: number; // 0.0-1.0, source credibility
freshness_score: number; // 0.0-1.0, temporal relevance
completeness_score: number; // 0.0-1.0, how complete this fragment is
validation_history: ValidationRecord[]; // Historical quality assessments
};
// Provenance and traceability
provenance: {
original_source: SourceReference;
extraction_method: string;
extraction_timestamp: Date;
validation_chain: ValidationChain;
usage_statistics: UsageStatistics;
};
// Integration metadata
integration: {
token_cost_estimate: number; // Estimated tokens if included in context
processing_complexity: number; // 0.0-1.0, complexity to process
dependencies: FragmentDependency[]; // Other fragments this depends on
enhancement_potential: EnhancementOpportunity[]; // Ways to improve this fragment
};
// Layer-specific metadata
layer_metadata: L1Metadata | L2Metadata | L4Metadata;
}
// Layer-specific metadata types
interface L1Metadata {
hyperbolic_coordinates: number[];
global_cluster_membership: string[];
multi_method_scores: {
vector_similarity: number;
graph_traversal: number;
agent_reasoning: number;
};
cross_domain_connections: CrossDomainConnection[];
}
interface L2Metadata {
project_relevance_score: number;
graph_position: GraphPosition;
usage_frequency_in_project: number;
related_project_artifacts: ProjectArtifact[];
project_specific_context: ProjectContext;
}
interface L4Metadata {
experience_trail_id: string;
success_correlation: number;
usage_patterns: UsagePattern[];
outcome_predictions: OutcomePrediction[];
similar_experience_references: ExperienceReference[];
}
Layer-Specific Implementations β
L1 (Noosphere) Provider Implementation β
class NoosphereProvider implements KnowledgeProvider {
private hyperbolic_index: HyperbolicSpatialIndex;
private multi_method_orchestrator: MultiMethodSearchOrchestrator;
private quality_validator: GlobalQualityValidator;
async search(query: CognitiveSearchQuery): Promise<CognitiveSearchResponse> {
// Multi-method search orchestration
const search_strategies = this.selectSearchStrategies(query);
const search_results = await this.executeMultiMethodSearch(query, search_strategies);
// Global quality assessment
const quality_assessment = await this.assessGlobalQuality(search_results, query);
// Hyperbolic space navigation optimization
const spatial_optimization = await this.optimizeWithSpatialContext(
search_results,
query.search_vector
);
return this.synthesizeNoosphereResponse(
search_results,
quality_assessment,
spatial_optimization,
query
);
}
private async executeMultiMethodSearch(
query: CognitiveSearchQuery,
strategies: SearchStrategy[]
): Promise<MultiMethodResults> {
const method_results = await Promise.allSettled([
// Vector similarity search in hyperbolic space
this.hyperbolic_index.vectorSearch(
query.search_vector,
{
top_k: query.requirements.max_results * 2, // Over-retrieve for quality filtering
similarity_threshold: query.requirements.min_quality_threshold,
distance_metric: "hyperbolic_distance"
}
),
// Graph traversal search
this.graph_navigator.traverseGraph(
query.search_vector,
{
max_hops: this.calculateOptimalHops(query.intent.complexity_level),
relationship_weights: this.getRelationshipWeights(query.intent),
termination_criteria: this.getTerminationCriteria(query.requirements)
}
),
// AI agent reasoning search
this.reasoning_agent.reasoningSearch(
query,
{
inference_depth: this.calculateInferenceDepth(query.intent),
domain_specialists: this.selectDomainSpecialists(query.intent.domain_context),
confidence_threshold: query.requirements.min_quality_threshold
}
)
]);
return this.synthesizeMultiMethodResults(method_results, query);
}
private async optimizeWithSpatialContext(
results: SearchResult[],
query_vector: number[]
): Promise<SpatialOptimization> {
// Calculate hyperbolic distances for spatial relationship understanding
const spatial_relationships = results.map(result => ({
fragment_id: result.fragment_id,
hyperbolic_distance: this.hyperbolic_index.calculateDistance(
query_vector,
result.embedding
),
cluster_membership: this.hyperbolic_index.getClusterMembership(result.embedding),
spatial_neighbors: this.hyperbolic_index.getNearestNeighbors(
result.embedding,
{ count: 5, max_distance: 0.5 }
)
}));
return {
spatial_relationships,
cluster_coherence: this.calculateClusterCoherence(spatial_relationships),
navigation_paths: this.identifyNavigationPaths(spatial_relationships),
spatial_quality_indicators: this.calculateSpatialQualityIndicators(spatial_relationships)
};
}
}
L2 (Project Library) Provider Implementation β
class ProjectLibraryProvider implements KnowledgeProvider {
private project_graph: ProjectKnowledgeGraph;
private relevance_scorer: ProjectRelevanceScorer;
private freshness_tracker: ProjectFreshnessTracker;
async search(query: CognitiveSearchQuery): Promise<CognitiveSearchResponse> {
// Project-specific context enhancement
const enhanced_query = await this.enhanceWithProjectContext(query);
// Multi-faceted project search
const search_results = await this.executeProjectSearch(enhanced_query);
// Project-specific quality assessment
const quality_assessment = await this.assessProjectQuality(search_results, enhanced_query);
// Graph-based relationship analysis
const relationship_analysis = await this.analyzeProjectRelationships(search_results);
return this.synthesizeProjectResponse(
search_results,
quality_assessment,
relationship_analysis,
enhanced_query
);
}
private async executeProjectSearch(query: EnhancedProjectQuery): Promise<ProjectSearchResults> {
// Parallel execution of multiple project-specific search strategies
const [
relevance_results,
graph_results,
temporal_results,
usage_results
] = await Promise.allSettled([
// Relevance-based search
this.relevance_scorer.searchByRelevance(query, {
project_context_weight: 0.6,
global_relevance_weight: 0.4,
recency_boost: 0.2
}),
// Graph traversal within project context
this.project_graph.searchByGraphTraversal(query, {
starting_nodes: this.identifyStartingNodes(query),
relationship_types: ["implements", "uses", "extends", "references"],
max_depth: 4,
relevance_threshold: query.requirements.min_quality_threshold
}),
// Temporal search for project evolution tracking
this.freshness_tracker.searchByTemporal(query, {
time_decay_factor: 0.1,
version_awareness: true,
change_impact_weighting: true
}),
// Usage-based search from project interaction patterns
this.usage_analyzer.searchByUsagePatterns(query, {
user_behavior_weight: 0.3,
success_pattern_weight: 0.7,
collaborative_signals: true
})
]);
return this.mergeProjectSearchResults([
relevance_results,
graph_results,
temporal_results,
usage_results
], query);
}
private async analyzeProjectRelationships(
results: ProjectSearchResults
): Promise<ProjectRelationshipAnalysis> {
const relationship_analysis = {
// Direct relationships between found fragments
direct_relationships: this.findDirectRelationships(results.fragments),
// Transitive relationships through project graph
transitive_relationships: await this.findTransitiveRelationships(results.fragments),
// Artifact dependencies
artifact_dependencies: await this.mapArtifactDependencies(results.fragments),
// Collaboration patterns
collaboration_patterns: await this.analyzeCollaborationPatterns(results.fragments),
// Project evolution tracking
evolution_timeline: await this.buildEvolutionTimeline(results.fragments)
};
return relationship_analysis;
}
}
L4 (Experience) Provider Implementation β
class ExperienceProvider implements KnowledgeProvider {
private experience_database: ExperienceDatabase;
private pattern_matcher: ExperiencePatternMatcher;
private outcome_predictor: OutcomePredictor;
async search(query: CognitiveSearchQuery): Promise<CognitiveSearchResponse> {
// Experience pattern matching
const pattern_matches = await this.matchExperiencePatterns(query);
// Outcome-based filtering
const outcome_filtered = await this.filterByOutcomes(pattern_matches, query);
// Temporal relevance assessment
const temporal_analysis = await this.assessTemporalRelevance(outcome_filtered, query);
// Success prediction
const success_predictions = await this.predictSuccessLikelihood(temporal_analysis, query);
return this.synthesizeExperienceResponse(
pattern_matches,
outcome_filtered,
temporal_analysis,
success_predictions,
query
);
}
private async matchExperiencePatterns(
query: CognitiveSearchQuery
): Promise<ExperiencePatternMatches> {
// Multi-dimensional pattern matching
const pattern_dimensions = {
// Task similarity matching
task_patterns: await this.pattern_matcher.matchTaskPatterns(query, {
semantic_similarity_weight: 0.4,
structural_similarity_weight: 0.3,
outcome_similarity_weight: 0.3
}),
// Context similarity matching
context_patterns: await this.pattern_matcher.matchContextPatterns(query, {
domain_context_weight: 0.5,
user_profile_weight: 0.3,
temporal_context_weight: 0.2
}),
// Solution pathway matching
solution_patterns: await this.pattern_matcher.matchSolutionPathways(query, {
pathway_effectiveness_weight: 0.6,
pathway_efficiency_weight: 0.4,
adaptability_score_weight: 0.2
}),
// Failure pattern matching (for avoidance)
failure_patterns: await this.pattern_matcher.matchFailurePatterns(query, {
failure_similarity_threshold: 0.7,
recovery_strategy_weight: 0.4,
prevention_strategy_weight: 0.6
})
};
return this.synthesizePatternMatches(pattern_dimensions);
}
private async predictSuccessLikelihood(
temporal_analysis: TemporalAnalysis,
query: CognitiveSearchQuery
): Promise<SuccessPredictions> {
const success_factors = {
// Historical success rates for similar queries
historical_success_rate: await this.calculateHistoricalSuccessRate(
temporal_analysis.similar_experiences
),
// User proficiency indicators
user_success_likelihood: await this.assessUserSuccessLikelihood(
query.context.user_expertise_level,
temporal_analysis.domain_experience
),
// Context favorability
context_favorability: await this.assessContextFavorability(
query.context,
temporal_analysis.successful_contexts
),
// Resource availability impact
resource_impact: await this.assessResourceImpact(
query.requirements,
temporal_analysis.resource_success_correlation
)
};
return {
overall_success_probability: this.calculateOverallSuccessProbability(success_factors),
success_factor_breakdown: success_factors,
risk_mitigation_strategies: await this.generateRiskMitigationStrategies(success_factors),
confidence_intervals: this.calculateConfidenceIntervals(success_factors)
};
}
}
Quality & Metadata Framework β
Unified Quality Assessment β
class UnifiedQualityAssessor {
private layer_assessors: Map<string, LayerSpecificQualityAssessor> = new Map();
async assessResponseQuality(
response: CognitiveSearchResponse,
query: CognitiveSearchQuery
): Promise<UnifiedQualityAssessment> {
// Individual fragment quality assessment
const fragment_assessments = await Promise.all(
response.fragments.map(fragment => this.assessFragmentQuality(fragment, query))
);
// Cross-fragment coherence assessment
const coherence_assessment = await this.assessCrossFragmentCoherence(
response.fragments,
fragment_assessments
);
// Response completeness assessment
const completeness_assessment = await this.assessResponseCompleteness(
response,
query,
fragment_assessments
);
// Response diversity assessment
const diversity_assessment = await this.assessResponseDiversity(
response.fragments,
query.requirements.diversity_requirement
);
return {
overall_quality_score: this.calculateOverallQualityScore([
fragment_assessments,
coherence_assessment,
completeness_assessment,
diversity_assessment
]),
fragment_quality_breakdown: fragment_assessments,
coherence_metrics: coherence_assessment,
completeness_metrics: completeness_assessment,
diversity_metrics: diversity_assessment,
quality_improvement_suggestions: this.generateImprovementSuggestions(
fragment_assessments,
coherence_assessment,
completeness_assessment,
diversity_assessment
)
};
}
private async assessFragmentQuality(
fragment: CognitiveFragment,
query: CognitiveSearchQuery
): Promise<FragmentQualityAssessment> {
// Get layer-specific quality assessment
const layer_assessor = this.layer_assessors.get(fragment.source_layer);
const layer_quality = await layer_assessor.assessQuality(fragment, query);
// Universal quality dimensions
const universal_quality = {
// Content quality assessment
content_quality: await this.assessContentQuality(fragment),
// Relevance to query assessment
query_relevance: await this.assessQueryRelevance(fragment, query),
// Information completeness assessment
information_completeness: await this.assessInformationCompleteness(fragment, query),
// Factual accuracy assessment
factual_accuracy: await this.assessFactualAccuracy(fragment),
// Source credibility assessment
source_credibility: await this.assessSourceCredibility(fragment)
};
return {
layer_specific_quality: layer_quality,
universal_quality: universal_quality,
composite_quality_score: this.calculateCompositeQualityScore(
layer_quality,
universal_quality
),
quality_confidence: this.calculateQualityConfidence(fragment),
improvement_potential: this.identifyImprovementPotential(fragment, universal_quality)
};
}
}
class MetadataEnrichmentEngine {
async enrichMetadata(
fragments: CognitiveFragment[],
query_context: CognitiveSearchQuery
): Promise<EnrichedFragment[]> {
return Promise.all(
fragments.map(async fragment => {
const enrichments = await this.generateEnrichments(fragment, query_context);
return {
...fragment,
enriched_metadata: {
// Cross-fragment relationships
relationships: await this.identifyRelationships(fragment, fragments),
// Usage predictions
usage_predictions: await this.predictUsage(fragment, query_context),
// Learning opportunities
learning_opportunities: await this.identifyLearningOpportunities(fragment),
// Follow-up suggestions
follow_up_suggestions: await this.generateFollowUpSuggestions(fragment, query_context),
// Quality evolution tracking
quality_evolution: await this.trackQualityEvolution(fragment),
// User personalization hints
personalization_hints: await this.generatePersonalizationHints(fragment, query_context)
}
};
})
);
}
}
Performance Optimization β
Intelligent Caching System β
class ProviderCacheManager {
private multi_level_cache: MultiLevelCache;
private cache_invalidation_tracker: CacheInvalidationTracker;
private performance_analytics: CachePerformanceAnalytics;
async getCachedResponse(
query: CognitiveSearchQuery
): Promise<CachedResponse | null> {
// Generate cache key with semantic and contextual components
const cache_key = await this.generateSemanticCacheKey(query);
// Check cache levels in order of speed
const cached_result = await this.multi_level_cache.get(cache_key, {
check_levels: ["memory", "redis", "distributed"],
freshness_requirements: this.calculateFreshnessRequirements(query),
quality_requirements: query.requirements.min_quality_threshold
});
if (cached_result) {
// Validate cache hit quality
const cache_validity = await this.validateCacheHit(cached_result, query);
if (cache_validity.is_valid) {
// Update cache analytics
await this.performance_analytics.recordCacheHit(cache_key, cache_validity.quality_score);
return {
...cached_result,
cache_metadata: {
cache_level: cache_validity.cache_level,
age_seconds: cache_validity.age_seconds,
quality_degradation: cache_validity.quality_degradation,
freshness_score: cache_validity.freshness_score
}
};
}
}
return null;
}
async cacheResponse(
query: CognitiveSearchQuery,
response: CognitiveSearchResponse
): Promise<void> {
const cache_key = await this.generateSemanticCacheKey(query);
const cache_policy = this.determineCachePolicy(query, response);
if (cache_policy.should_cache) {
// Prepare response for caching with optimization
const optimized_response = await this.optimizeForCache(response);
// Store in appropriate cache levels
await this.multi_level_cache.set(
cache_key,
optimized_response,
{
ttl_seconds: cache_policy.ttl_seconds,
cache_levels: cache_policy.target_levels,
eviction_priority: cache_policy.eviction_priority,
invalidation_triggers: cache_policy.invalidation_triggers
}
);
// Set up proactive invalidation monitoring
await this.cache_invalidation_tracker.monitor(cache_key, cache_policy.invalidation_triggers);
}
}
private determineCachePolicy(
query: CognitiveSearchQuery,
response: CognitiveSearchResponse
): CachePolicy {
const base_policy = {
should_cache: true,
ttl_seconds: 3600, // 1 hour default
target_levels: ["memory"] as CacheLevel[],
eviction_priority: "normal" as EvictionPriority,
invalidation_triggers: [] as InvalidationTrigger[]
};
// High quality responses get longer TTL and broader distribution
if (response.overall_quality.confidence_score > 0.9) {
base_policy.ttl_seconds = 14400; // 4 hours
base_policy.target_levels = ["memory", "redis"];
base_policy.eviction_priority = "low"; // Keep longer
}
// Frequently requested queries get distributed caching
if (this.isFrequentQuery(query)) {
base_policy.target_levels = ["memory", "redis", "distributed"];
base_policy.eviction_priority = "very_low";
}
// Time-sensitive queries get shorter TTL
if (query.intent.temporal_context === "immediate") {
base_policy.ttl_seconds = 900; // 15 minutes
}
// Set up invalidation triggers based on content types
base_policy.invalidation_triggers = this.identifyInvalidationTriggers(response.fragments);
return base_policy;
}
}
Request Optimization β
class RequestOptimizer {
private query_analyzer: QueryComplexityAnalyzer;
private batching_engine: BatchingEngine;
private parallel_executor: ParallelExecutor;
async optimizeRequest(
queries: CognitiveSearchQuery[]
): Promise<OptimizedExecutionPlan> {
// Analyze query characteristics for optimization
const query_analysis = await this.query_analyzer.analyzeQueries(queries);
// Determine optimal execution strategy
const execution_strategy = this.selectExecutionStrategy(query_analysis);
switch (execution_strategy.type) {
case "batched_execution":
return this.planBatchedExecution(queries, execution_strategy.params);
case "parallel_execution":
return this.planParallelExecution(queries, execution_strategy.params);
case "hybrid_execution":
return this.planHybridExecution(queries, execution_strategy.params);
case "sequential_execution":
return this.planSequentialExecution(queries, execution_strategy.params);
default:
return this.planDefaultExecution(queries);
}
}
private async planBatchedExecution(
queries: CognitiveSearchQuery[],
params: BatchingParams
): Promise<BatchedExecutionPlan> {
// Group queries by similarity and provider affinity
const query_groups = this.batching_engine.groupQueries(queries, {
similarity_threshold: params.similarity_threshold,
provider_affinity: params.provider_affinity,
max_batch_size: params.max_batch_size
});
const execution_batches = query_groups.map(group => ({
batch_id: this.generateBatchId(),
queries: group.queries,
estimated_time: this.estimateBatchTime(group),
resource_requirements: this.calculateBatchResourceRequirements(group),
optimization_opportunities: this.identifyBatchOptimizations(group)
}));
return {
execution_type: "batched",
batches: execution_batches,
total_estimated_time: execution_batches.reduce((sum, batch) => sum + batch.estimated_time, 0),
parallelization_opportunities: this.identifyParallelizationOpportunities(execution_batches),
resource_optimization: this.planResourceOptimization(execution_batches)
};
}
private async planParallelExecution(
queries: CognitiveSearchQuery[],
params: ParallelParams
): Promise<ParallelExecutionPlan> {
// Analyze dependencies between queries
const dependency_graph = await this.buildQueryDependencyGraph(queries);
// Plan parallel execution waves
const execution_waves = this.parallel_executor.planExecutionWaves(
dependency_graph,
{
max_parallel_degree: params.max_parallel_degree,
resource_constraints: params.resource_constraints,
priority_weighting: params.priority_weighting
}
);
return {
execution_type: "parallel",
execution_waves: execution_waves,
dependency_graph: dependency_graph,
resource_utilization_profile: this.calculateResourceProfile(execution_waves),
estimated_completion_time: this.calculateParallelCompletionTime(execution_waves)
};
}
}
Error Handling & Resilience β
Comprehensive Error Taxonomy β
interface ProviderError {
error_id: string;
error_type: ProviderErrorType;
severity: "low" | "medium" | "high" | "critical";
affected_layers: ("L1" | "L2" | "L4")[];
error_context: ErrorContext;
recovery_strategies: RecoveryStrategy[];
impact_assessment: ErrorImpactAssessment;
}
enum ProviderErrorType {
// Network and connectivity errors
NETWORK_TIMEOUT = "network_timeout",
CONNECTION_FAILED = "connection_failed",
SERVICE_UNAVAILABLE = "service_unavailable",
// Data and content errors
INVALID_QUERY = "invalid_query",
NO_RESULTS_FOUND = "no_results_found",
QUALITY_THRESHOLD_NOT_MET = "quality_threshold_not_met",
DATA_CORRUPTION = "data_corruption",
// Resource and performance errors
RESOURCE_EXHAUSTION = "resource_exhaustion",
TIMEOUT_EXCEEDED = "timeout_exceeded",
MEMORY_PRESSURE = "memory_pressure",
CPU_OVERLOAD = "cpu_overload",
// Authentication and authorization errors
AUTHENTICATION_FAILED = "authentication_failed",
AUTHORIZATION_DENIED = "authorization_denied",
RATE_LIMIT_EXCEEDED = "rate_limit_exceeded",
// System and configuration errors
CONFIGURATION_ERROR = "configuration_error",
DEPENDENCY_FAILURE = "dependency_failure",
VERSION_INCOMPATIBILITY = "version_incompatibility",
// Quality and validation errors
QUALITY_VALIDATION_FAILED = "quality_validation_failed",
CONTENT_FILTERING_REJECTED = "content_filtering_rejected",
METADATA_INCONSISTENCY = "metadata_inconsistency"
}
class ProviderErrorHandler {
private recovery_strategies: Map<ProviderErrorType, RecoveryStrategyTemplate> = new Map();
private circuit_breakers: Map<string, CircuitBreaker> = new Map();
private error_analytics: ErrorAnalytics;
async handleError(
error: ProviderError,
original_query: CognitiveSearchQuery,
execution_context: ExecutionContext
): Promise<ErrorRecoveryResult> {
// Log error with comprehensive context
await this.error_analytics.recordError(error, original_query, execution_context);
// Assess immediate impact
const impact_assessment = await this.assessErrorImpact(error, execution_context);
// Select recovery strategy
const recovery_strategy = this.selectRecoveryStrategy(error, impact_assessment);
// Execute recovery
const recovery_result = await this.executeRecovery(
recovery_strategy,
original_query,
execution_context
);
// Update circuit breakers if necessary
await this.updateCircuitBreakers(error, recovery_result);
return recovery_result;
}
private async executeRecovery(
strategy: RecoveryStrategy,
original_query: CognitiveSearchQuery,
context: ExecutionContext
): Promise<ErrorRecoveryResult> {
switch (strategy.type) {
case "retry_with_backoff":
return this.executeRetryRecovery(strategy, original_query, context);
case "fallback_to_alternative_provider":
return this.executeFallbackRecovery(strategy, original_query, context);
case "degrade_quality_requirements":
return this.executeDegradationRecovery(strategy, original_query, context);
case "partial_results_return":
return this.executePartialResultsRecovery(strategy, original_query, context);
case "cache_fallback":
return this.executeCacheFallbackRecovery(strategy, original_query, context);
case "graceful_failure":
return this.executeGracefulFailure(strategy, original_query, context);
default:
return this.executeDefaultRecovery(strategy, original_query, context);
}
}
private async executeFallbackRecovery(
strategy: FallbackRecoveryStrategy,
query: CognitiveSearchQuery,
context: ExecutionContext
): Promise<FallbackRecoveryResult> {
const fallback_providers = this.identifyFallbackProviders(
context.failed_providers,
query.requirements
);
for (const fallback_provider of fallback_providers) {
try {
// Adjust query for fallback provider capabilities
const adjusted_query = await this.adjustQueryForProvider(query, fallback_provider);
// Execute fallback search
const fallback_result = await fallback_provider.search(adjusted_query);
// Validate fallback result quality
const quality_validation = await this.validateFallbackQuality(
fallback_result,
query.requirements
);
if (quality_validation.meets_minimum_requirements) {
return {
recovery_type: "fallback_success",
provider: fallback_provider.id,
result: fallback_result,
quality_impact: quality_validation.quality_impact,
warnings: quality_validation.warnings
};
}
} catch (fallback_error) {
// Log fallback failure and continue to next provider
await this.error_analytics.recordFallbackFailure(fallback_provider.id, fallback_error);
continue;
}
}
// All fallbacks failed
return {
recovery_type: "fallback_exhausted",
attempted_providers: fallback_providers.map(p => p.id),
final_action: "graceful_degradation"
};
}
}
Circuit Breaker Implementation β
class ProviderCircuitBreaker {
private state: "closed" | "open" | "half_open" = "closed";
private failure_count = 0;
private last_failure_time = 0;
private success_count = 0;
constructor(
private provider_id: string,
private config: CircuitBreakerConfig
) {}
async execute<T>(
operation: () => Promise<T>,
fallback?: () => Promise<T>
): Promise<T> {
if (this.state === "open") {
if (this.shouldAttemptReset()) {
this.state = "half_open";
this.success_count = 0;
} else {
if (fallback) {
return fallback();
}
throw new Error(`Circuit breaker open for provider ${this.provider_id}`);
}
}
try {
const result = await operation();
this.recordSuccess();
return result;
} catch (error) {
this.recordFailure();
throw error;
}
}
private recordSuccess(): void {
this.failure_count = 0;
if (this.state === "half_open") {
this.success_count++;
if (this.success_count >= this.config.success_threshold) {
this.state = "closed";
}
}
}
private recordFailure(): void {
this.failure_count++;
this.last_failure_time = Date.now();
if (this.failure_count >= this.config.failure_threshold) {
this.state = "open";
}
}
private shouldAttemptReset(): boolean {
return Date.now() - this.last_failure_time > this.config.recovery_timeout;
}
}
Security & Privacy β
Privacy-Preserving Search β
class PrivacyPreservingSearchEngine {
private data_classifier: DataClassifier;
private anonymization_engine: AnonymizationEngine;
private encryption_manager: EncryptionManager;
async executePrivacyPreservingSearch(
query: CognitiveSearchQuery,
privacy_policy: PrivacyPolicy
): Promise<PrivacyPreservingSearchResult> {
// Classify sensitive data in query
const sensitivity_analysis = await this.data_classifier.analyzeQuery(query);
// Apply privacy transformations
const privacy_transformed_query = await this.applyPrivacyTransformations(
query,
sensitivity_analysis,
privacy_policy
);
// Execute search with privacy constraints
const search_result = await this.executeConstrainedSearch(
privacy_transformed_query,
privacy_policy
);
// Apply privacy filters to results
const privacy_filtered_results = await this.applyResultPrivacyFilters(
search_result,
privacy_policy,
sensitivity_analysis
);
return {
results: privacy_filtered_results,
privacy_metadata: {
sensitivity_level: sensitivity_analysis.overall_sensitivity,
transformations_applied: privacy_transformed_query.transformations,
filters_applied: privacy_filtered_results.filters,
privacy_compliance_score: this.calculatePrivacyComplianceScore(
sensitivity_analysis,
privacy_policy,
privacy_filtered_results
)
}
};
}
private async applyPrivacyTransformations(
query: CognitiveSearchQuery,
sensitivity: SensitivityAnalysis,
policy: PrivacyPolicy
): Promise<PrivacyTransformedQuery> {
const transformations: PrivacyTransformation[] = [];
let transformed_query = { ...query };
// Apply anonymization to personally identifiable information
if (sensitivity.contains_pii) {
const anonymization_result = await this.anonymization_engine.anonymizeQuery(
transformed_query,
policy.pii_handling_policy
);
transformed_query = anonymization_result.anonymized_query;
transformations.push({
type: "anonymization",
applied_to: "pii_fields",
method: anonymization_result.anonymization_method
});
}
// Apply encryption to sensitive content
if (sensitivity.contains_confidential_data) {
const encryption_result = await this.encryption_manager.encryptSensitiveFields(
transformed_query,
policy.encryption_policy
);
transformed_query = encryption_result.encrypted_query;
transformations.push({
type: "encryption",
applied_to: "confidential_fields",
method: encryption_result.encryption_method
});
}
// Apply differential privacy noise
if (policy.differential_privacy_enabled) {
const dp_result = await this.applyDifferentialPrivacy(
transformed_query,
policy.differential_privacy_epsilon
);
transformed_query = dp_result.noisy_query;
transformations.push({
type: "differential_privacy",
applied_to: "query_vector",
epsilon: policy.differential_privacy_epsilon
});
}
return {
transformed_query,
transformations,
privacy_impact: this.assessPrivacyTransformationImpact(transformations)
};
}
}
Access Control & Authorization β
class ProviderAccessController {
private authorization_engine: AuthorizationEngine;
private audit_logger: AuditLogger;
private permission_cache: PermissionCache;
async authorizeSearch(
query: CognitiveSearchQuery,
user_context: UserContext,
provider_requirements: ProviderAccessRequirements
): Promise<AuthorizationResult> {
// Check cached permissions first
const cached_permission = await this.permission_cache.getPermission(
user_context.user_id,
provider_requirements.required_permissions
);
if (cached_permission && !this.isPermissionExpired(cached_permission)) {
return {
authorized: cached_permission.authorized,
permissions: cached_permission.permissions,
restrictions: cached_permission.restrictions,
source: "cache"
};
}
// Perform full authorization check
const authorization_result = await this.authorization_engine.authorize(
user_context,
{
resource_type: "knowledge_search",
resource_identifier: provider_requirements.resource_identifier,
required_permissions: provider_requirements.required_permissions,
context_factors: {
query_sensitivity: this.assessQuerySensitivity(query),
data_classification: provider_requirements.data_classification,
access_context: this.determineAccessContext(user_context, query)
}
}
);
// Cache the authorization result
await this.permission_cache.setPermission(
user_context.user_id,
authorization_result,
this.calculateCacheTTL(authorization_result)
);
// Log authorization event
await this.audit_logger.logAuthorizationEvent({
user_id: user_context.user_id,
query_id: query.query_id,
provider_id: provider_requirements.provider_id,
authorized: authorization_result.authorized,
permissions_checked: provider_requirements.required_permissions,
restrictions_applied: authorization_result.restrictions
});
return authorization_result;
}
async applyAccessRestrictions(
search_result: CognitiveSearchResponse,
authorization: AuthorizationResult
): Promise<RestrictedSearchResponse> {
if (!authorization.restrictions || authorization.restrictions.length === 0) {
return { ...search_result, restrictions_applied: [] };
}
let restricted_result = { ...search_result };
const applied_restrictions: AppliedRestriction[] = [];
for (const restriction of authorization.restrictions) {
switch (restriction.type) {
case "content_filtering":
const filtering_result = await this.applyContentFiltering(
restricted_result,
restriction.parameters
);
restricted_result = filtering_result.filtered_result;
applied_restrictions.push({
type: "content_filtering",
impact: filtering_result.impact,
filtered_count: filtering_result.filtered_count
});
break;
case "quality_degradation":
const degradation_result = await this.applyQualityDegradation(
restricted_result,
restriction.parameters
);
restricted_result = degradation_result.degraded_result;
applied_restrictions.push({
type: "quality_degradation",
impact: degradation_result.impact,
degradation_level: degradation_result.degradation_level
});
break;
case "result_limitation":
const limitation_result = await this.applyResultLimitation(
restricted_result,
restriction.parameters
);
restricted_result = limitation_result.limited_result;
applied_restrictions.push({
type: "result_limitation",
impact: limitation_result.impact,
original_count: limitation_result.original_count,
limited_count: limitation_result.limited_count
});
break;
}
}
return {
...restricted_result,
restrictions_applied: applied_restrictions,
access_metadata: {
authorization_level: authorization.authorization_level,
restrictions_summary: this.summarizeRestrictions(applied_restrictions),
compliance_status: this.assessComplianceStatus(authorization, applied_restrictions)
}
};
}
}
Monitoring & Observability β
Comprehensive Monitoring Framework β
class ProviderMonitoringSystem {
private metrics_collector: MetricsCollector;
private performance_analyzer: PerformanceAnalyzer;
private health_monitor: HealthMonitor;
private alerting_engine: AlertingEngine;
startMonitoring(providers: KnowledgeProvider[]): void {
providers.forEach(provider => {
this.initializeProviderMonitoring(provider);
});
}
private initializeProviderMonitoring(provider: KnowledgeProvider): void {
const provider_id = provider.getCapabilities().provider_id;
// Performance metrics monitoring
this.metrics_collector.registerMetrics(provider_id, {
// Latency metrics
search_latency: new HistogramMetric("search_latency_ms", {
buckets: [10, 50, 100, 200, 500, 1000, 2000, 5000],
labels: ["provider_id", "query_type", "result_quality"]
}),
// Throughput metrics
requests_per_second: new CounterMetric("requests_total", {
labels: ["provider_id", "status", "error_type"]
}),
// Quality metrics
result_quality: new GaugeMetric("result_quality_score", {
labels: ["provider_id", "query_complexity", "user_satisfaction"]
}),
// Resource utilization metrics
cpu_utilization: new GaugeMetric("cpu_utilization_percent", {
labels: ["provider_id", "instance_id"]
}),
memory_utilization: new GaugeMetric("memory_utilization_percent", {
labels: ["provider_id", "instance_id"]
}),
// Cache metrics
cache_hit_rate: new GaugeMetric("cache_hit_rate", {
labels: ["provider_id", "cache_level"]
}),
// Error metrics
error_rate: new CounterMetric("errors_total", {
labels: ["provider_id", "error_type", "severity"]
})
});
// Health monitoring
this.health_monitor.registerHealthChecks(provider_id, {
// Basic connectivity health check
connectivity: {
check_interval_seconds: 30,
timeout_seconds: 10,
failure_threshold: 3
},
// Response quality health check
quality_degradation: {
check_interval_seconds: 300, // 5 minutes
quality_threshold: 0.7,
degradation_threshold: 0.2
},
// Performance health check
performance_degradation: {
check_interval_seconds: 60,
latency_threshold_ms: 1000,
degradation_threshold: 0.5
}
});
}
async collectProviderMetrics(provider_id: string): Promise<ProviderMetrics> {
const [
performance_metrics,
quality_metrics,
resource_metrics,
error_metrics
] = await Promise.all([
this.performance_analyzer.getPerformanceMetrics(provider_id),
this.performance_analyzer.getQualityMetrics(provider_id),
this.performance_analyzer.getResourceMetrics(provider_id),
this.performance_analyzer.getErrorMetrics(provider_id)
]);
return {
provider_id,
timestamp: new Date(),
performance: performance_metrics,
quality: quality_metrics,
resources: resource_metrics,
errors: error_metrics,
health_status: await this.health_monitor.getHealthStatus(provider_id)
};
}
}
class ProviderAnalyticsDashboard {
generateProviderAnalytics(
providers: string[],
time_range: TimeRange
): ProviderAnalytics {
return {
// Performance analytics
performance_summary: this.generatePerformanceSummary(providers, time_range),
// Quality trends
quality_trends: this.generateQualityTrends(providers, time_range),
// Usage patterns
usage_patterns: this.generateUsagePatterns(providers, time_range),
// Error analysis
error_analysis: this.generateErrorAnalysis(providers, time_range),
// Capacity planning insights
capacity_insights: this.generateCapacityInsights(providers, time_range),
// Optimization recommendations
optimization_recommendations: this.generateOptimizationRecommendations(providers, time_range)
};
}
private generateOptimizationRecommendations(
providers: string[],
time_range: TimeRange
): OptimizationRecommendation[] {
const recommendations: OptimizationRecommendation[] = [];
providers.forEach(provider_id => {
const metrics = this.getProviderMetrics(provider_id, time_range);
// Performance optimization recommendations
if (metrics.average_latency > 1000) {
recommendations.push({
provider_id,
type: "performance",
priority: "high",
recommendation: "Consider implementing request batching and caching optimization",
expected_improvement: "30-50% latency reduction",
implementation_effort: "medium"
});
}
// Quality optimization recommendations
if (metrics.average_quality_score < 0.8) {
recommendations.push({
provider_id,
type: "quality",
priority: "high",
recommendation: "Implement additional quality validation steps",
expected_improvement: "15-25% quality improvement",
implementation_effort: "high"
});
}
// Resource optimization recommendations
if (metrics.cache_hit_rate < 0.6) {
recommendations.push({
provider_id,
type: "resource",
priority: "medium",
recommendation: "Optimize caching strategy and increase cache sizes",
expected_improvement: "20-40% resource efficiency improvement",
implementation_effort: "low"
});
}
});
return recommendations;
}
}
Future Extensions β
Advanced Integration Patterns β
interface AdvancedIntegrationPatterns {
// Federated search across multiple Mnemoverse instances
federated_search: {
cross_instance_orchestration: CrossInstanceOrchestrator;
distributed_quality_assessment: DistributedQualityAssessor;
federated_caching: FederatedCacheManager;
};
// Machine learning-enhanced provider optimization
ml_optimization: {
query_optimization: QueryOptimizationML;
provider_selection: ProviderSelectionML;
quality_prediction: QualityPredictionML;
};
// Real-time adaptation and learning
adaptive_learning: {
user_behavior_learning: UserBehaviorLearner;
content_evolution_tracking: ContentEvolutionTracker;
performance_auto_tuning: PerformanceAutoTuner;
};
}
Experimental Provider Types β
interface ExperimentalProviders {
// Multimodal knowledge providers
multimodal_providers: {
vision_knowledge: VisionKnowledgeProvider;
audio_knowledge: AudioKnowledgeProvider;
video_knowledge: VideoKnowledgeProvider;
};
// Collaborative knowledge providers
collaborative_providers: {
crowd_sourced_knowledge: CrowdSourcedProvider;
expert_network_knowledge: ExpertNetworkProvider;
peer_review_knowledge: PeerReviewProvider;
};
// Temporal knowledge providers
temporal_providers: {
historical_trend_knowledge: HistoricalTrendProvider;
predictive_knowledge: PredictiveKnowledgeProvider;
temporal_correlation: TemporalCorrelationProvider;
};
}
Conclusion β
The Provider API specification represents a comprehensive integration framework that enables seamless orchestration across Mnemoverse's knowledge layers while preserving the unique characteristics and optimizations of each layer.
Key Architectural Achievements β
- Cognitive Abstraction: API designed around human understanding patterns rather than technical constraints
- Unified Interface: Single contract supporting diverse knowledge layer implementations
- Quality Transparency: Comprehensive metadata for informed orchestration decisions
- Performance Optimization: Sub-200ms response targets with intelligent caching and batching
- Graceful Degradation: Robust error handling with multiple fallback strategies
- Privacy by Design: Built-in privacy preservation and access control
- Comprehensive Observability: Full-spectrum monitoring and analytics
Integration Benefits β
- Simplified Orchestration: ACS can treat all knowledge sources uniformly
- Optimized Performance: Layer-specific optimizations preserved while enabling cross-layer coordination
- Enhanced Quality: Comprehensive quality assessment and validation across all sources
- Robust Operations: Production-ready error handling, monitoring, and security
- Future Extensibility: Ready for new knowledge layer types and advanced capabilities
The Provider API serves as the foundational integration layer that makes Mnemoverse's multi-layer architecture practically viable while maintaining the cognitive focus that differentiates the system from traditional knowledge retrieval approaches.
References β
- Service-Oriented Architecture: Erl, T. (2005). "Service-Oriented Architecture: Concepts, Technology, and Design"
- API Design Patterns: Lauret, A. (2019). "The Design of Web APIs"
- Distributed Systems: Kleppmann, M. (2017). "Designing Data-Intensive Applications"
- Caching Strategies: Fowler, M. (2003). "Patterns of Enterprise Application Architecture"
- Circuit Breaker Pattern: Nygard, M. (2007). "Release It!"
- Monitoring Best Practices: Godard, B. (2016). "Site Reliability Engineering"
- [Internal] ACS Architecture Specification (2025-09-05)
- [Internal] CEO Architecture Specification (2025-09-05)
- [Internal] HCS Architecture Specification (2025-09-05)
- [Internal] Noosphere Layer Architecture (v2.1)
Document Status: Published | Last Updated: 2025-09-05 | Authors: Architecture Team + Integration Specialists | Technical Depth: PhD-level specification β