AI Staff Agents (L1 Components) β
Specialized AI agents providing contextual intelligence within the Noosphere architecture. Each agent has distinct capabilities, interfaces, and collaboration patterns.
Architecture Overview β
ββββββββββββββββββββββββββββββββββββββββββββββββ
β Meta-Agent Core β
β (Pattern Cache Engine) β
βββββββββββββββββββ¬βββββββββββββββββββββββββββββ
β Context & routing
βΌ
βββββββββββββββββββββββββββββββββββββββββββββββββββ
β AI Staff Collective β
β βββββββββββββββ βββββββββββββββ ββββββββββββββββ β
β β Librarian β β Researcher β β Validator β β
β β Agent β β Agent β β Agent β β
β βββββββββββββββ βββββββββββββββ ββββββββββββββββ β
β βββββββββββββββ β
β β Navigator β β
β β Agent β β
β βββββββββββββββ β
βββββββββββββββββββββββββββββββββββββββββββββββββββ
Agent Specifications β
1. Librarian Agent β
Role: Information discovery, cataloging, and organization
Core Capabilities:
class LibrarianAgent:
def discover_sources(self, query: str, domain: str) -> List[Source]:
"""Find and catalog relevant information sources"""
def categorize_content(self, content: Document) -> Categories:
"""Classify and tag content by topic, type, quality"""
def build_bibliography(self, sources: List[Source]) -> Bibliography:
"""Generate structured citations and references"""
def assess_source_quality(self, source: Source) -> QualityMetrics:
"""Evaluate credibility, recency, authority"""
Training Data Requirements:
- Academic paper databases (arXiv, PubMed, ACL, etc.)
- Technical documentation repositories
- Code repositories with documentation
- Citation networks and bibliographic data
- Source credibility scoring datasets
Interface Specifications:
{
"agent_type": "librarian",
"capabilities": [
"source_discovery",
"content_cataloging",
"bibliography_generation",
"quality_assessment"
],
"input_formats": [
"natural_language_query",
"structured_search_criteria",
"document_batch"
],
"output_formats": [
"source_list",
"categorized_catalog",
"bibliography",
"quality_report"
]
}
2. Researcher Agent β
Role: Deep analysis, synthesis, and knowledge connection
Core Capabilities:
class ResearcherAgent:
def analyze_patterns(self, documents: List[Document]) -> PatternAnalysis:
"""Identify themes, trends, and connections across sources"""
def synthesize_insights(self, analyses: List[Analysis]) -> Synthesis:
"""Combine findings into coherent understanding"""
def identify_gaps(self, domain_knowledge: KnowledgeBase) -> List[Gap]:
"""Find missing information or research opportunities"""
def generate_hypotheses(self, data: AnalysisData) -> List[Hypothesis]:
"""Propose testable explanations for observed patterns"""
Specialization Areas:
- Technical Research: Code analysis, architecture patterns, performance studies
- Academic Research: Literature reviews, meta-analysis, citation tracking
- Market Research: Technology adoption, competitive analysis, trend identification
- Historical Research: Evolution tracking, timeline construction, cause-effect analysis
Training Requirements:
- Multi-domain research methodologies
- Statistical analysis and inference techniques
- Citation network analysis
- Hypothesis generation patterns
- Research quality assessment frameworks
3. Validator Agent β
Role: Data quality assurance, fact-checking, and credibility assessment
Core Capabilities:
class ValidatorAgent:
def verify_facts(self, claims: List[Claim], sources: List[Source]) -> VerificationReport:
"""Cross-reference claims against authoritative sources"""
def assess_bias(self, content: Document) -> BiasAnalysis:
"""Detect potential bias in sources or arguments"""
def check_consistency(self, knowledge_base: KnowledgeBase) -> ConsistencyReport:
"""Identify contradictions within knowledge collection"""
def validate_methodologies(self, research: ResearchDocument) -> MethodologyAssessment:
"""Evaluate research methods and statistical validity"""
Validation Frameworks:
- Source Authority: Academic credentials, publication venues, citation counts
- Content Consistency: Internal logic, factual alignment, methodological rigor
- Temporal Validity: Information recency, version control, update frequency
- Cross-Reference Verification: Multi-source confirmation, contradiction detection
Quality Metrics:
{
"credibility_score": 0.0-1.0,
"bias_indicators": ["political", "commercial", "confirmation"],
"verification_status": "verified|disputed|unverifiable",
"confidence_level": "high|medium|low",
"supporting_sources": ["source_id_1", "source_id_2"],
"contradictory_sources": ["source_id_3"]
}
4. Navigator Agent β
Role: Investigation guidance and complex reasoning pathways
Core Capabilities:
class NavigatorAgent:
def plan_investigation(self, objective: ResearchObjective) -> InvestigationPlan:
"""Create structured approach for complex inquiries"""
def suggest_next_steps(self, current_state: InvestigationState) -> List[Action]:
"""Recommend optimal next actions based on progress"""
def resolve_ambiguity(self, ambiguous_query: Query) -> List[Clarification]:
"""Break down vague requests into specific, actionable queries"""
def orchestrate_agents(self, task: ComplexTask) -> AgentOrchestration:
"""Coordinate multi-agent collaboration for complex tasks"""
Investigation Strategies:
- Breadth-First: Explore all related areas before deepening
- Depth-First: Deep dive into specific aspects before broadening
- Hybrid Approach: Balance between breadth and depth based on task requirements
- Iterative Refinement: Progressive narrowing based on intermediate results
Agent Collaboration Patterns β
Context Handover Protocol β
{
"handover_context": {
"from_agent": "librarian",
"to_agent": "researcher",
"task_id": "uuid",
"partial_results": {...},
"next_actions": [...],
"context_preservation": {
"user_intent": "original query interpretation",
"search_history": "previous attempts and results",
"quality_constraints": "user-specified requirements"
}
}
}
Multi-Agent Workflows β
1. Comprehensive Research Pipeline:
Librarian β Researcher β Validator β Navigator
β β β β
Discovery Analysis Verification Synthesis
2. Quality-First Approach:
Librarian β Validator β Researcher β Navigator
β β β β
Discover Validate Analyze Guide Next Steps
3. Iterative Refinement:
Navigator β Librarian β Researcher β Validator β Navigator
β β β β β
Plan Discover Analyze Verify Refine
Training and Knowledge Updates β
Training Pipeline β
class AgentTrainingPipeline:
def continuous_learning(self,
feedback_data: FeedbackData,
domain_updates: DomainKnowledge) -> TrainingUpdate:
"""Incorporate new knowledge and user feedback"""
def validate_performance(self,
test_scenarios: List[Scenario]) -> PerformanceMetrics:
"""Measure agent effectiveness on known tasks"""
def update_specialization(self,
domain_focus: str,
training_data: SpecializedDataset) -> UpdateResult:
"""Fine-tune agent for specific domain expertise"""
Knowledge Validation Cycle β
- Performance Monitoring: Track success rates, user satisfaction
- Gap Identification: Detect areas where agents underperform
- Targeted Training: Update models with domain-specific improvements
- A/B Testing: Compare updated agents against baseline performance
- Gradual Deployment: Roll out improvements with safety checks
Feedback Integration β
{
"feedback_types": {
"explicit": "user ratings, corrections, preferences",
"implicit": "interaction patterns, time spent, task completion",
"system": "performance metrics, error rates, resource usage"
},
"learning_triggers": {
"immediate": "critical errors, user corrections",
"batch": "periodic retraining on accumulated feedback",
"threshold": "performance drop below acceptable levels"
}
}
MCP Integration Interfaces β
Command Specifications β
# Librarian operations
/ai-staff/librarian/discover --query "memory-augmented networks" --domain "ml"
/ai-staff/librarian/catalog --sources "source_ids" --categories "research,implementation"
/ai-staff/librarian/bibliography --format "apa|ieee|chicago" --sources "source_ids"
# Researcher operations
/ai-staff/researcher/analyze --documents "doc_ids" --focus "patterns|trends|gaps"
/ai-staff/researcher/synthesize --analyses "analysis_ids" --output-format "summary|report|insights"
/ai-staff/researcher/hypothesize --data "analysis_data" --domain "technical|academic"
# Validator operations
/ai-staff/validator/verify --claims "claim_ids" --cross-reference --depth "shallow|deep"
/ai-staff/validator/assess --content "content_id" --check "bias|consistency|methodology"
/ai-staff/validator/report --verification-id "uuid" --format "summary|detailed"
# Navigator operations
/ai-staff/navigator/plan --objective "research_goal" --constraints "time|resources|quality"
/ai-staff/navigator/guide --current-state "investigation_state" --suggest "next-steps"
/ai-staff/navigator/orchestrate --task "complex_task" --agents "librarian,researcher,validator"
Response Formats β
{
"agent_response": {
"agent_type": "librarian|researcher|validator|navigator",
"task_id": "uuid",
"status": "completed|in_progress|failed",
"results": {...},
"confidence": 0.0-1.0,
"next_recommendations": [...],
"resource_usage": {
"tokens_used": 1500,
"processing_time": "2.3s",
"cost_estimate": "$0.045"
}
}
}
Performance & Testing Framework β
Agent Performance Metrics β
interface AgentPerformanceMetrics {
task_success_rate: number; // 0.0-1.0
average_response_time: number; // milliseconds
quality_score: number; // 0.0-1.0, output quality
resource_efficiency: number; // 0.0-1.0, cost per quality unit
collaboration_score: number; // 0.0-1.0, multi-agent effectiveness
}
describe('AI Agent Testing Framework', () => {
test('librarian agent source discovery', async () => {
const query = "machine learning interpretability methods";
const result = await librarianAgent.discover_sources(query, "ml");
expect(result.sources.length).toBeGreaterThan(5);
expect(result.quality_metrics.average_credibility).toBeGreaterThan(0.7);
expect(result.response_time_ms).toBeLessThan(3000);
});
test('researcher agent synthesis quality', async () => {
const documents = await loadTestDocuments("distributed_systems");
const synthesis = await researcherAgent.synthesize_insights(documents);
expect(synthesis.coherence_score).toBeGreaterThan(0.8);
expect(synthesis.novel_connections).toHaveLength(3);
expect(synthesis.supporting_evidence.length).toBeGreaterThan(10);
});
test('validator agent fact checking accuracy', async () => {
const test_claims = loadTestClaims("technical_facts");
const verification = await validatorAgent.verify_facts(test_claims);
expect(verification.accuracy_rate).toBeGreaterThan(0.95);
expect(verification.false_positive_rate).toBeLessThan(0.05);
});
});
Production Operations β
Agent Monitoring:
ai_agent_monitoring:
metrics:
- name: ai_agent_task_success_rate
type: gauge
labels: [agent_type, task_complexity]
- name: ai_agent_response_time_seconds
type: histogram
buckets: [0.5, 1.0, 2.0, 5.0, 10.0, 30.0]
labels: [agent_type, domain]
- name: ai_agent_quality_score
type: gauge
labels: [agent_id, output_type]
alerts:
- name: AIAgentPerformanceDegradation
condition: ai_agent_task_success_rate < 0.9
severity: warning
duration: 5m
Implementation Roadmap β
Phase 1: Core Agents (v0.1) - 4 weeks β
- [ ] Librarian: Source discovery and cataloging
- [ ] Validator: Basic fact-checking and quality assessment
- [ ] Agent communication protocols
- [ ] Performance monitoring framework
Phase 2: Advanced Capabilities (v0.2) - 3 weeks β
- [ ] Researcher: Analysis and synthesis
- [ ] Navigator: Investigation planning
- [ ] Multi-agent collaboration workflows
- [ ] Production deployment and scaling
Success Criteria β
- Agent response time P95 < 10 seconds
- Task success rate > 95%
- Quality score > 0.8
- Multi-agent collaboration efficiency > 0.75
Related Documentation β
Noosphere Components: β
- Noosphere Overview β L1 system overview and navigation
- Technical Architecture β Component interactions and data flows
- Vector Search β Embedding models and indexing
- Knowledge Graph β Entity relationships and traversal
Integration & Protocols: β
- MCP Integration β Model Context Protocol specifications
- Search Abstraction β Unified search interface
- Hyperbolic Space β Mathematical foundations
Status: Agent specifications complete β Implementation ready β Production target (v0.2)