L3 Orchestration Integration Flows β
Purpose: This document shows exactly HOW the L3 orchestration components (CEOβACSβHCS) work together in practice. Instead of theoretical architecture, we trace concrete examples through the complete system.
Quick Navigation β
- Simple Query Flow β Start here: basic debugging question
- Complex Query Flow β Advanced: multi-layered research query
- Resource Pressure Flow β How system degrades gracefully
- Error Recovery Flow β What happens when things go wrong
Simple Query Flow β
Scenario: Developer asks: "How do I handle React authentication timeouts on mobile?"
Phase 1: CEO β Intent Formation β
{
"input_query": "How do I handle React authentication timeouts on mobile?",
"ceo_analysis": {
"intent": {
"type": "implementation_guidance",
"domain": "react_authentication_mobile",
"urgency": "medium",
"complexity": "intermediate"
},
"user_context": {
"current_file": "src/auth/AuthProvider.tsx",
"project_type": "react-typescript",
"experience_level": "intermediate_developer"
},
"resource_allocation": {
"tokens_max": 3000,
"time_ms": 800,
"quality_target": "production_ready"
},
"risk_assessment": {
"security_sensitive": true,
"privacy_mode": "allow_technical",
"code_safety": "review_required"
}
}
}
CEO Decision Logic:
function formulateIntent(query: string, context: UserContext): StructuredIntent {
// 1. Semantic intent classification
const intent_type = intentClassifier.classify(query);
// Result: "implementation_guidance" (not "debugging", not "research")
// 2. Domain extraction
const domain = domainExtractor.extract(query);
// Result: ["react", "authentication", "mobile", "timeouts"]
// 3. Context enrichment
const enriched_context = enrichContext(query, context);
// Adds: current_file, project_structure, recent_errors
// 4. Resource budget estimation
const budget = budgetEstimator.estimate(intent_type, domain, context);
// Implementation guidance + intermediate = 3000 tokens, 800ms
return { intent_type, domain, context: enriched_context, budget };
}
Phase 2: ACS β Context Assembly Planning β
{
"acs_plan": {
"source_strategy": {
"primary": "L2_project_library",
"secondary": "L4_experience_trails",
"fallback": "L1_global_knowledge"
},
"lod_allocation": {
"macro": 20, // High-level patterns
"micro": 60, // Implementation details
"atomic": 20 // Specific code examples
},
"parallel_requests": [
{
"target": "L2",
"query": "React auth timeout handling mobile",
"time_budget": 200,
"token_budget": 1200,
"lod": "micro_focused"
},
{
"target": "L4",
"query": "authentication timeout resolution patterns",
"time_budget": 150,
"token_budget": 600,
"lod": "pattern_focused"
},
{
"target": "L1",
"query": "React mobile authentication best practices",
"time_budget": 300,
"token_budget": 1200,
"lod": "comprehensive",
"trigger": "if_insufficient_coverage"
}
]
}
}
ACS Planning Algorithm:
function planContextAssembly(intent: StructuredIntent): AssemblyPlan {
// 1. Source prioritization based on intent type
const sources = prioritizeSources(intent);
// Implementation guidance β L2 primary (project-specific solutions)
// 2. LOD allocation based on complexity
const lod = allocateLevelOfDetail(intent.complexity, intent.budget);
// Intermediate complexity β 60% micro detail
// 3. Parallel execution plan
const requests = createParallelRequests(sources, lod, intent.budget);
// 4. Fallback triggers
const fallbacks = defineFallbackTriggers(intent.quality_target);
return { sources, lod, requests, fallbacks };
}
Phase 3: Parallel Source Execution β
L2 Project Library Response (Primary):
{
"source": "L2_project_library",
"execution_time": 180,
"results": [
{
"fragment_id": "auth-timeout-patterns-001",
"relevance_score": 0.94,
"content": "Mobile auth timeout handling in React: Use exponential backoff with max 3 retries. Handle network state changes.",
"code_examples": ["useAuthTimeout hook", "NetworkState detector"],
"metadata": {
"freshness": "2024-08-15",
"validation_score": 0.91,
"usage_frequency": 0.78
}
}
],
"coverage_assessment": {
"implementation_details": 0.85,
"mobile_specific": 0.90,
"timeout_handling": 0.95
}
}
L4 Experience Trails Response (Secondary):
{
"source": "L4_experience_trails",
"execution_time": 145,
"results": [
{
"trail_id": "react-auth-debug-session-042",
"similarity": 0.89,
"resolution_pattern": "timeout_retry_with_backoff",
"successful_outcome": true,
"key_insights": [
"Mobile Safari requires different timeout values",
"Network state changes need explicit handling",
"User feedback during retry attempts improves UX"
]
}
],
"pattern_confidence": 0.87
}
L1 Global Knowledge (Triggered by insufficient mobile coverage):
{
"source": "L1_global_knowledge",
"execution_time": 285,
"trigger_reason": "mobile_specific_coverage < 0.95",
"results": [
{
"fragment_id": "mobile-auth-comprehensive-001",
"knowledge_type": "best_practices",
"content": "Mobile authentication timeout patterns: iOS Safari 30s default, Android Chrome 60s. Network change events fire during timeouts.",
"authoritative_sources": [
"React Native Auth Guide v3.2",
"MDN: Network Information API",
"iOS Safari Technical Note TN2265"
]
}
]
}
Phase 4: ACS β Fragment Selection & Assembly β
Selection Algorithm:
function selectAndAssemble(responses: SourceResponse[]): AssembledContext {
// 1. Score all fragments
const scored_fragments = responses.flatMap(response =>
response.results.map(fragment => ({
...fragment,
composite_score: calculateCompositeScore(fragment, intent)
}))
);
// 2. Diversity-aware selection
const selected = diversitySelect(scored_fragments, {
max_fragments: 8,
diversity_threshold: 0.15,
budget_tokens: 3000
});
// 3. Optimal ordering
const ordered = optimizeOrdering(selected, intent.lod_allocation);
return { fragments: ordered, assembly_metadata };
}
function calculateCompositeScore(fragment: Fragment, intent: Intent): number {
return (
fragment.relevance_score * 0.4 + // How relevant to query
fragment.validation_score * 0.3 + // Historical quality
fragment.freshness_score * 0.2 + // How recent/current
fragment.implementation_completeness * 0.1 // How actionable
);
}
Final Assembly:
{
"assembled_context": {
"total_tokens": 2847,
"assembly_time_ms": 756,
"fragments": [
{
"priority": 1,
"source": "L2",
"type": "implementation_pattern",
"content": "React mobile auth timeout handling with exponential backoff...",
"confidence": 0.94
},
{
"priority": 2,
"source": "L4",
"type": "experience_insight",
"content": "Previous successful resolution: Safari requires different timeout values...",
"confidence": 0.89
},
{
"priority": 3,
"source": "L1",
"type": "authoritative_reference",
"content": "iOS Safari 30s default timeout behavior...",
"confidence": 0.92
}
]
},
"quality_metrics": {
"coverage_completeness": 0.91,
"implementation_actionability": 0.88,
"source_diversity": 0.73
}
}
Complex Query Flow β
Scenario: Research query: "What are the trade-offs between different state management approaches for large React applications with real-time features?"
Phase 1: CEO β Complex Intent Analysis β
{
"complex_intent": {
"type": "comparative_research",
"scope": "architectural_decision",
"domains": ["react", "state_management", "real_time", "scalability"],
"comparison_dimensions": ["performance", "developer_experience", "maintainability"],
"depth_requirement": "comprehensive_analysis",
"deliverable": "decision_framework"
},
"enhanced_budgets": {
"tokens_max": 8000, // Higher for research
"time_ms": 2000, // More time for multi-source analysis
"quality_target": "expert_level"
}
}
Phase 2: ACS β Multi-Layer Orchestration β
{
"complex_plan": {
"orchestration_strategy": "comprehensive_synthesis",
"source_allocation": {
"L1_global": 40, // Authoritative knowledge about patterns
"L2_project": 30, // Project-specific experiences
"L4_experience": 30 // Historical decision outcomes
},
"parallel_execution": [
{
"target": "L1",
"sub_queries": [
"Redux vs Zustand performance comparison",
"Real-time state management patterns",
"Large application architecture patterns"
],
"synthesis_required": true
},
{
"target": "L2",
"focus": "existing_implementations",
"analysis_type": "pattern_extraction"
},
{
"target": "L4",
"focus": "decision_outcomes",
"success_criteria": ["maintainability_scores", "team_satisfaction"]
}
]
}
}
Phase 3: Cross-Layer Synthesis β
L1 Authoritative Analysis:
{
"synthesis_result": {
"knowledge_graph_traversal": {
"starting_nodes": ["react_state_management", "real_time_systems"],
"traversal_depth": 3,
"discovered_patterns": [
"redux_rtk_query_pattern",
"zustand_real_time_integration",
"jotai_atomic_updates"
]
},
"comparative_framework": {
"dimensions": ["bundle_size", "learning_curve", "real_time_support"],
"solutions": ["redux_toolkit", "zustand", "jotai", "recoil"],
"evaluation_matrix": "...detailed comparison..."
}
}
}
Cross-Source Integration:
function synthesizeComplexQuery(responses: MultiSourceResponse[]): SynthesizedContext {
// 1. Extract key themes across sources
const themes = extractCommonThemes(responses);
// 2. Build comparison matrix
const comparison = buildComparisonMatrix(themes, responses);
// 3. Identify gaps and conflicts
const analysis = analyzeGapsAndConflicts(comparison);
// 4. Generate decision framework
const framework = generateDecisionFramework(analysis);
return { themes, comparison, framework, confidence_scores };
}
Resource Pressure Flow β
Scenario: High-load situation with limited resources - budget_tokens: 1500, time_ms: 400
ACS Graceful Degradation β
{
"degradation_strategy": {
"triggered_by": "resource_pressure",
"adjustments": [
{
"type": "lod_reduction",
"from": {"macro": 20, "micro": 60, "atomic": 20},
"to": {"macro": 40, "micro": 50, "atomic": 10}
},
{
"type": "source_prioritization",
"strategy": "L2_only_unless_critical_gap"
},
{
"type": "fragment_limit",
"max_fragments": 5, // Reduced from 8
"quality_threshold": 0.8 // Increased from 0.7
}
]
}
}
Degradation Decision Tree:
function gracefulDegradation(budget: ResourceBudget, intent: Intent): DegradationPlan {
if (budget.tokens_max < 2000) {
// Severe constraint
return {
sources: ["L2_primary"],
lod: { macro: 60, micro: 40, atomic: 0 },
max_fragments: 3
};
} else if (budget.time_ms < 500) {
// Time pressure
return {
sources: ["L2_primary", "L4_if_cached"],
parallel_limit: 2,
timeout_aggressive: true
};
}
return standardPlan(budget, intent);
}
Error Recovery Flow β
Scenario: L2 Project Library temporarily unavailable
HCS Circuit Breaker & Recovery β
{
"error_scenario": {
"failed_component": "L2_project_library",
"error_type": "service_unavailable",
"circuit_breaker_state": "open"
},
"recovery_plan": {
"immediate_fallback": {
"sources": ["L4_experience", "L1_global"],
"budget_reallocation": {
"L4": 40, // Increased from 30
"L1": 60 // Increased from 40
},
"quality_adjustment": "inform_user_of_degradation"
},
"circuit_breaker_recovery": {
"test_interval": "30s",
"success_threshold": 3,
"fallback_timeout": "5m"
}
}
}
Recovery Logic:
class OrchestrationErrorRecovery {
async handleSourceFailure(failed_source: string, intent: Intent): Promise<RecoveryPlan> {
const circuit_state = this.circuit_breaker.getState(failed_source);
if (circuit_state === 'open') {
// Immediate fallback
const fallback_plan = this.generateFallbackPlan(failed_source, intent);
// Schedule recovery attempt
this.scheduleRecoveryAttempt(failed_source);
return fallback_plan;
}
// Progressive retry with backoff
return this.retryWithBackoff(failed_source, intent);
}
}
Production Implementation Framework β
Integration Testing Strategy β
describe('L3 Orchestration Integration Tests', () => {
describe('End-to-End Flow Tests', () => {
test('simple query complete flow', async () => {
const query = "How do I handle React auth timeouts on mobile?";
const context = { current_file: "src/auth/AuthProvider.tsx" };
// CEO Intent Formation
const intent = await ceo.formulateIntent(query, context);
expect(intent.type).toBe('implementation_guidance');
expect(intent.budget.tokens_max).toBeGreaterThan(2000);
// ACS Planning
const plan = await acs.planContextAssembly(intent);
expect(plan.source_strategy.primary).toBe('L2_project_library');
// Parallel Execution
const responses = await acs.executeParallel(plan);
expect(responses.length).toBeGreaterThan(0);
expect(responses[0].source).toBe('L2_project_library');
// Assembly
const context = await acs.assembleContext(responses, intent);
expect(context.total_tokens).toBeLessThanOrEqual(intent.budget.tokens_max);
expect(context.quality_metrics.coverage_completeness).toBeGreaterThan(0.8);
});
});
describe('Resource Pressure Tests', () => {
test('graceful degradation under token pressure', async () => {
const constrained_intent = {
...standard_intent,
budget: { tokens_max: 1000, time_ms: 300 }
};
const plan = await acs.planContextAssembly(constrained_intent);
expect(plan.lod_allocation.macro).toBeGreaterThan(0.4); // More macro focus
expect(plan.max_fragments).toBeLessThanOrEqual(4);
});
});
});
Performance Monitoring β
orchestration_monitoring:
metrics:
# Flow performance
- name: l3_intent_formulation_duration_ms
type: histogram
labels: [intent_type, complexity]
- name: l3_context_assembly_duration_ms
type: histogram
labels: [source_count, lod_profile]
# Quality metrics
- name: l3_context_quality_score
type: histogram
labels: [query_type, resource_level]
- name: l3_user_satisfaction_rating
type: gauge
labels: [flow_type]
alerts:
- name: L3OrchestrationLatencyHigh
condition: l3_context_assembly_duration_ms{quantile="0.95"} > 1000
severity: warning
- name: L3QualityScoreLow
condition: l3_context_quality_score{quantile="0.50"} < 0.7
severity: warning
Success Criteria & Validation β
Integration Success Metrics β
const orchestration_success_criteria = {
performance: {
simple_query_latency_p95: 800, // ms
complex_query_latency_p95: 2000, // ms
resource_efficiency: 0.85 // utilization ratio
},
quality: {
user_satisfaction_avg: 4.2, // out of 5.0
coverage_completeness: 0.8, // minimum threshold
implementation_success_rate: 0.75 // user-reported success
},
reliability: {
error_recovery_success_rate: 0.95,
graceful_degradation_quality: 0.7, // vs. normal operation
circuit_breaker_effectiveness: 0.9
}
};
Validation Framework β
describe('Orchestration Validation Suite', () => {
test('validates complete integration flows', async () => {
const test_scenarios = loadTestScenarios('./test-data/integration-scenarios.json');
for (const scenario of test_scenarios) {
const result = await orchestrator.processQuery(scenario.query, scenario.context);
// Performance validation
expect(result.total_latency_ms).toBeLessThan(scenario.max_latency);
// Quality validation
expect(result.quality_score).toBeGreaterThan(scenario.min_quality);
// Coverage validation
expect(result.coverage_analysis.completeness).toBeGreaterThan(0.8);
}
});
});
Next Steps & Extensions β
Phase 1 Implementation Priorities β
- CEO Intent Classification - Implement robust intent detection
- ACS Basic Planning - Core planning algorithms with simple heuristics
- Source Integration - Connect to L1/L2/L4 with proper error handling
- Fragment Assembly - Quality-aware context assembly
- Monitoring Integration - Basic metrics and observability
Phase 2 Enhancements β
- Learning from Outcomes - Feedback loops for continuous improvement
- Advanced LOD Algorithms - ML-based level-of-detail optimization
- Predictive Resource Management - Anticipatory budget allocation
- Cross-Session Learning - User pattern recognition and adaptation
Status: Implementation-Ready | Complexity: High | Priority: Critical Path
This integration guide provides the concrete implementation roadmap for L3 Orchestration, showing exactly how the components work together to deliver intelligent context assembly under real-world constraints.