HCS (Human-Centric Streaming) Component β
Overview: HCS serves as the "cognitive delivery engine" of Mnemoverse orchestration, transforming assembled context into progressively delivered information streams that respect human attention patterns and cognitive load limits. Currently in Stage 2 planning - v0 operates in batch mode only.
Component Architecture β
Current Status: Stage 2 Planning β
v0 Constraints (Batch Mode Only) β
- No Streaming: All responses delivered as complete batches
- No Progressive Disclosure: Full context delivered simultaneously
- No Adaptive Pacing: Fixed delivery without cognitive load adaptation
- No Real-time Feedback: One-way communication only
Stage 2 Vision (v0.2+ Target) β
- Human-Centric Streaming: Progressive information delivery respecting cognitive limits
- Adaptive Pacing: Dynamic adjustment based on user attention and comprehension
- Multi-Modal Delivery: Text, code, diagrams delivered through optimal channels
- Feedback Integration: Real-time adaptation based on user interaction patterns
Core Responsibilities (Planned) β
1. Cognitive Load Assessment β
- Function: Analyze information density and complexity for optimal delivery pacing
- Scope: Text complexity analysis, code comprehension load, diagram processing time
- Features: Real-time load monitoring, attention pattern recognition, fatigue detection
- Output: Cognitive load profiles with recommended pacing strategies
2. Progressive Content Delivery β
- Function: Stream information in cognitively optimized chunks and sequences
- Scope: Content chunking, dependency ordering, attention management
- Features: Adaptive chunk sizing, pause insertion, emphasis highlighting
- Output: Timed content streams with optimal information flow
3. Multi-Modal Coordination β
- Function: Coordinate delivery across text, visual, and interactive channels
- Scope: Channel selection, synchronization, cross-modal reinforcement
- Features: Medium-specific optimization, accessibility adaptation, device awareness
- Output: Coordinated multi-channel content delivery
4. Feedback-Driven Adaptation β
- Function: Continuously adapt delivery based on real-time user feedback
- Scope: Attention tracking, comprehension assessment, preference learning
- Features: Eye tracking integration, interaction analysis, satisfaction optimization
- Output: Personalized delivery profiles with continuous improvement
Theoretical Foundation β
Cognitive Psychology Principles β
Attention Theory (Kahneman, 1973) β
typescript
interface AttentionModel {
// Limited capacity attention allocation
calculateAttentionBudget(user: UserProfile, content: Content): AttentionBudget;
// Attention management strategies
manageAttentionLoad(fragments: Fragment[], budget: AttentionBudget): DeliveryPlan;
// Divided attention considerations
assessMultiModalLoad(channels: DeliveryChannel[]): CognitiveLoad;
}
Working Memory Theory (Baddeley, 2000) β
typescript
interface WorkingMemoryModel {
// Working memory subsystems
visuospatial_sketchpad: VisuospatialProcessor;
phonological_loop: PhonologicalProcessor;
episodic_buffer: EpisodicIntegrator;
central_executive: ExecutiveController;
// Capacity-aware content delivery
optimizeForWorkingMemory(content: Content): OptimizedDelivery;
}
Cognitive Load Theory (Sweller, 1988) β
typescript
interface CognitiveLoadModel {
// Load types assessment
intrinsic_load: number; // Content complexity
extraneous_load: number; // Presentation overhead
germane_load: number; // Learning facilitation
// Total load management
total_load: number = this.intrinsic_load + this.extraneous_load + this.germane_load;
// Optimization strategy
optimizeLoad(): LoadOptimization {
return {
reduce_extraneous: this.minimizeDistraction(),
manage_intrinsic: this.chunkContent(),
enhance_germane: this.addScaffolding()
};
}
}
Planned Architecture (Stage 2) β
Streaming Infrastructure β
typescript
interface StreamingInfrastructure {
// Transport protocols
sse_handler: SSEStreamHandler;
websocket_handler: WebSocketHandler;
http2_handler: HTTP2StreamHandler;
// Stream management
stream_multiplexer: StreamMultiplexer;
backpressure_controller: BackpressureController;
quality_adapter: QualityAdapter;
}
class SSEStreamHandler {
async initializeStream(sessionId: string, preferences: UserPreferences): Promise<StreamSession> {
const stream = await this.createSSEConnection(sessionId);
const cognitive_profile = await this.buildCognitiveProfile(preferences);
return {
stream_id: sessionId,
transport: 'sse',
cognitive_profile,
adaptive_pacer: new AdaptivePacer(cognitive_profile),
feedback_collector: new FeedbackCollector(stream)
};
}
async deliverContent(session: StreamSession, content: ProcessedContent): Promise<void> {
const delivery_plan = session.adaptive_pacer.createPlan(content);
for (const chunk of delivery_plan.chunks) {
await this.sendChunk(session.stream, chunk);
await this.waitForOptimalTiming(chunk.pause_duration);
// Collect real-time feedback
const feedback = await session.feedback_collector.collectImmediate();
session.adaptive_pacer.adaptBasedOnFeedback(feedback);
}
}
}
Adaptive Pacing Engine β
typescript
class AdaptivePacingEngine {
private cognitive_models: Map<string, CognitiveModel> = new Map();
private pacing_strategies: Map<string, PacingStrategy> = new Map();
async calculateOptimalPacing(
content: Content,
user_profile: UserProfile,
current_context: DeliveryContext
): Promise<PacingPlan> {
const cognitive_model = await this.getCognitiveModel(user_profile);
const content_analysis = await this.analyzeContent(content);
const context_factors = await this.assessContext(current_context);
return {
chunk_sizes: this.optimizeChunkSizes(content_analysis, cognitive_model),
pause_durations: this.calculatePauses(content_analysis, context_factors),
emphasis_points: this.identifyEmphasisPoints(content_analysis),
adaptation_triggers: this.defineAdaptationTriggers(cognitive_model)
};
}
private optimizeChunkSizes(content: ContentAnalysis, model: CognitiveModel): ChunkSizeOptimization {
const base_capacity = model.working_memory_capacity; // ~7Β±2 items
const complexity_adjustment = content.complexity_score;
const fatigue_adjustment = model.current_fatigue_level;
return {
optimal_chunk_size: Math.floor(base_capacity * (1 - complexity_adjustment) * (1 - fatigue_adjustment)),
min_chunk_size: Math.max(1, this.optimal_chunk_size * 0.3),
max_chunk_size: Math.min(15, this.optimal_chunk_size * 1.5)
};
}
}
Progressive Disclosure Framework β
typescript
interface ProgressiveDisclosure {
// Content hierarchy analysis
content_hierarchy: ContentHierarchyAnalyzer;
// Disclosure strategies
disclosure_strategies: DisclosureStrategyEngine;
// Interaction tracking
interaction_tracker: InteractionTracker;
}
class ProgressiveDisclosureEngine {
async planDisclosure(fragments: Fragment[], user_context: UserContext): Promise<DisclosurePlan> {
// Analyze content hierarchy and dependencies
const hierarchy = await this.analyzeContentHierarchy(fragments);
// Determine disclosure strategy based on user expertise and task context
const strategy = await this.selectDisclosureStrategy(user_context, hierarchy);
return {
disclosure_phases: [
{
phase: "overview",
content: hierarchy.top_level_concepts,
duration_estimate: "30-60 seconds",
interaction_triggers: ["expand_detail", "skip_to_implementation"]
},
{
phase: "detailed_exploration",
content: hierarchy.detailed_explanations,
duration_estimate: "2-5 minutes",
interaction_triggers: ["dive_deeper", "see_examples", "back_to_overview"]
},
{
phase: "implementation_guidance",
content: hierarchy.actionable_steps,
duration_estimate: "3-10 minutes",
interaction_triggers: ["copy_code", "modify_parameters", "next_steps"]
}
],
adaptation_points: strategy.adaptation_triggers,
fallback_options: strategy.fallback_strategies
};
}
}
Performance Characteristics (Target) β
Streaming Latency Targets β
- Stream Initiation: < 100ms (p95) - connection setup and cognitive profiling
- First Chunk Delivery: < 200ms (p95) - initial content processing and delivery
- Inter-Chunk Latency: < 50ms (p95) - content preparation between chunks
- Adaptation Response: < 100ms (p95) - real-time pacing adjustment
Cognitive Optimization Metrics β
- Attention Retention: > 80% sustained attention through full delivery
- Comprehension Rate: > 85% user understanding of delivered content
- Cognitive Load Balance: Maintain total load < 85% of user capacity
- Personalization Accuracy: > 90% correct pacing preference prediction
Technical Performance β
- Concurrent Streams: 1000+ simultaneous streaming sessions
- Memory Efficiency: < 10MB per active stream
- CPU Utilization: < 5% per stream for pacing calculations
- Network Efficiency: < 20% overhead for streaming protocol
Integration Points (Planned) β
Upstream Integration (ACS Component) β
typescript
interface ACSIntegration {
// Receive assembled context from ACS
receiveAssembledContext(context: ACSResponse): Promise<StreamingPlan>;
// Request additional context based on user interaction
requestAdditionalContext(expansion: ContextExpansion): Promise<ACSResponse>;
// Provide feedback on content utilization
reportContentUtilization(metrics: UtilizationMetrics): Promise<void>;
}
Downstream Integration (Client Applications) β
typescript
interface ClientIntegration {
// Multiple transport protocols
sse_endpoint: "/stream/sse/:session_id";
websocket_endpoint: "/stream/ws/:session_id";
// Client capability negotiation
negotiateCapabilities(client_info: ClientInfo): StreamingCapabilities;
// Feedback collection
collectFeedback(session_id: string, feedback: UserFeedback): Promise<void>;
}
Current Implementation Plan β
β Completed (v0) β
- Theoretical foundation research - cognitive psychology and attention theory integration
- Architecture specification (44,000+ lines) - comprehensive streaming system design
- Batch mode operation - full context delivery without streaming
- Performance baseline established - metrics collection in batch responses
π§ Stage 1.5 (v0.1 Target) β
- Basic streaming infrastructure - SSE/WebSocket endpoint implementation
- Simple progressive disclosure - content chunking without adaptive pacing
- Basic feedback collection - user interaction tracking and response
- Performance monitoring - streaming-specific metrics and alerting
π Stage 2 (v0.2+ Target) β
- Advanced cognitive modeling - real-time cognitive load assessment
- Adaptive pacing engine - dynamic adjustment based on user feedback
- Multi-modal coordination - text, visual, and interactive content streams
- Machine learning integration - personalized delivery optimization
Development Resources β
Theoretical Background β
- Architecture:
./architecture.md
- Comprehensive 44,000+ line specification - Cognitive Psychology Research - attention theory, working memory, cognitive load
- Progressive Disclosure Patterns - UX research and implementation strategies
Integration Documentation β
- ACS Coordination:
../acs/README.md
- upstream context assembly - CEO Integration:
../ceo/README.md
- overall orchestration flow - API Specifications:
../api/README.md
- HTTP, internal, and provider contracts
Implementation Guides β
- Overall System:
../README.md
- orchestration overview - End-to-End Examples:
../../walkthrough.md
- batch mode examples - Streaming Patterns - future implementation patterns and best practices
Research & Development Focus β
Cognitive Science Integration β
- Attention span modeling based on task complexity and user expertise
- Working memory optimization for multi-modal content delivery
- Fatigue detection and adaptive response strategies
- Individual differences in cognitive processing patterns
Streaming Technology Optimization β
- Low-latency protocols for real-time cognitive adaptation
- Efficient content encoding for minimal network overhead
- Progressive enhancement for varied client capabilities
- Offline-first strategies for unreliable network conditions
User Experience Research β
- Optimal pacing patterns for different content types
- Attention management in multi-tasking environments
- Accessibility considerations for cognitive diversity
- Cross-cultural adaptation for different attention patterns
Future Vision (Stage 3+) β
Advanced Cognitive Features β
typescript
interface AdvancedCognitiveFeatures {
// Real-time attention tracking
attention_monitoring: AttentionTracker;
// Predictive cognitive modeling
cognitive_prediction: CognitivePredictionEngine;
// Adaptive content generation
adaptive_content: AdaptiveContentGenerator;
// Multi-user coordination
collaborative_streaming: CollaborativeStreamingEngine;
}
Brain-Computer Interface Integration β
typescript
interface BCIIntegration {
// EEG attention monitoring
eeg_attention_tracker: EEGAttentionMonitor;
// Eye tracking integration
eye_tracking: EyeTrackingSystem;
// Physiological stress monitoring
stress_monitor: PhysiologicalStressTracker;
// Adaptive response system
physiological_adaptation: PhysiologicalAdaptationEngine;
}
Component Status: Research Complete β Architecture Designed β Implementation Planned (Stage 2)
Current Priority: Maintain batch mode excellence while preparing streaming infrastructure for v0.2+
Next Steps: Begin Stage 1.5 implementation with basic streaming endpoints and simple progressive disclosure patterns.