Skip to content

HCS (Human-Centric Streaming) Component ​

Overview: HCS serves as the "cognitive delivery engine" of Mnemoverse orchestration, transforming assembled context into progressively delivered information streams that respect human attention patterns and cognitive load limits. Currently in Stage 2 planning - v0 operates in batch mode only.

Component Architecture ​

Current Status: Stage 2 Planning ​

v0 Constraints (Batch Mode Only) ​

  • No Streaming: All responses delivered as complete batches
  • No Progressive Disclosure: Full context delivered simultaneously
  • No Adaptive Pacing: Fixed delivery without cognitive load adaptation
  • No Real-time Feedback: One-way communication only

Stage 2 Vision (v0.2+ Target) ​

  • Human-Centric Streaming: Progressive information delivery respecting cognitive limits
  • Adaptive Pacing: Dynamic adjustment based on user attention and comprehension
  • Multi-Modal Delivery: Text, code, diagrams delivered through optimal channels
  • Feedback Integration: Real-time adaptation based on user interaction patterns

Core Responsibilities (Planned) ​

1. Cognitive Load Assessment ​

  • Function: Analyze information density and complexity for optimal delivery pacing
  • Scope: Text complexity analysis, code comprehension load, diagram processing time
  • Features: Real-time load monitoring, attention pattern recognition, fatigue detection
  • Output: Cognitive load profiles with recommended pacing strategies

2. Progressive Content Delivery ​

  • Function: Stream information in cognitively optimized chunks and sequences
  • Scope: Content chunking, dependency ordering, attention management
  • Features: Adaptive chunk sizing, pause insertion, emphasis highlighting
  • Output: Timed content streams with optimal information flow

3. Multi-Modal Coordination ​

  • Function: Coordinate delivery across text, visual, and interactive channels
  • Scope: Channel selection, synchronization, cross-modal reinforcement
  • Features: Medium-specific optimization, accessibility adaptation, device awareness
  • Output: Coordinated multi-channel content delivery

4. Feedback-Driven Adaptation ​

  • Function: Continuously adapt delivery based on real-time user feedback
  • Scope: Attention tracking, comprehension assessment, preference learning
  • Features: Eye tracking integration, interaction analysis, satisfaction optimization
  • Output: Personalized delivery profiles with continuous improvement

Theoretical Foundation ​

Cognitive Psychology Principles ​

Attention Theory (Kahneman, 1973) ​

typescript
interface AttentionModel {
  // Limited capacity attention allocation
  calculateAttentionBudget(user: UserProfile, content: Content): AttentionBudget;
  
  // Attention management strategies
  manageAttentionLoad(fragments: Fragment[], budget: AttentionBudget): DeliveryPlan;
  
  // Divided attention considerations
  assessMultiModalLoad(channels: DeliveryChannel[]): CognitiveLoad;
}

Working Memory Theory (Baddeley, 2000) ​

typescript
interface WorkingMemoryModel {
  // Working memory subsystems
  visuospatial_sketchpad: VisuospatialProcessor;
  phonological_loop: PhonologicalProcessor;
  episodic_buffer: EpisodicIntegrator;
  central_executive: ExecutiveController;
  
  // Capacity-aware content delivery
  optimizeForWorkingMemory(content: Content): OptimizedDelivery;
}

Cognitive Load Theory (Sweller, 1988) ​

typescript
interface CognitiveLoadModel {
  // Load types assessment
  intrinsic_load: number;    // Content complexity
  extraneous_load: number;   // Presentation overhead
  germane_load: number;      // Learning facilitation
  
  // Total load management
  total_load: number = this.intrinsic_load + this.extraneous_load + this.germane_load;
  
  // Optimization strategy
  optimizeLoad(): LoadOptimization {
    return {
      reduce_extraneous: this.minimizeDistraction(),
      manage_intrinsic: this.chunkContent(),
      enhance_germane: this.addScaffolding()
    };
  }
}

Planned Architecture (Stage 2) ​

Streaming Infrastructure ​

typescript
interface StreamingInfrastructure {
  // Transport protocols
  sse_handler: SSEStreamHandler;
  websocket_handler: WebSocketHandler;
  http2_handler: HTTP2StreamHandler;
  
  // Stream management
  stream_multiplexer: StreamMultiplexer;
  backpressure_controller: BackpressureController;
  quality_adapter: QualityAdapter;
}

class SSEStreamHandler {
  async initializeStream(sessionId: string, preferences: UserPreferences): Promise<StreamSession> {
    const stream = await this.createSSEConnection(sessionId);
    const cognitive_profile = await this.buildCognitiveProfile(preferences);
    
    return {
      stream_id: sessionId,
      transport: 'sse',
      cognitive_profile,
      adaptive_pacer: new AdaptivePacer(cognitive_profile),
      feedback_collector: new FeedbackCollector(stream)
    };
  }
  
  async deliverContent(session: StreamSession, content: ProcessedContent): Promise<void> {
    const delivery_plan = session.adaptive_pacer.createPlan(content);
    
    for (const chunk of delivery_plan.chunks) {
      await this.sendChunk(session.stream, chunk);
      await this.waitForOptimalTiming(chunk.pause_duration);
      
      // Collect real-time feedback
      const feedback = await session.feedback_collector.collectImmediate();
      session.adaptive_pacer.adaptBasedOnFeedback(feedback);
    }
  }
}

Adaptive Pacing Engine ​

typescript
class AdaptivePacingEngine {
  private cognitive_models: Map<string, CognitiveModel> = new Map();
  private pacing_strategies: Map<string, PacingStrategy> = new Map();
  
  async calculateOptimalPacing(
    content: Content, 
    user_profile: UserProfile,
    current_context: DeliveryContext
  ): Promise<PacingPlan> {
    
    const cognitive_model = await this.getCognitiveModel(user_profile);
    const content_analysis = await this.analyzeContent(content);
    const context_factors = await this.assessContext(current_context);
    
    return {
      chunk_sizes: this.optimizeChunkSizes(content_analysis, cognitive_model),
      pause_durations: this.calculatePauses(content_analysis, context_factors),
      emphasis_points: this.identifyEmphasisPoints(content_analysis),
      adaptation_triggers: this.defineAdaptationTriggers(cognitive_model)
    };
  }
  
  private optimizeChunkSizes(content: ContentAnalysis, model: CognitiveModel): ChunkSizeOptimization {
    const base_capacity = model.working_memory_capacity; // ~7Β±2 items
    const complexity_adjustment = content.complexity_score;
    const fatigue_adjustment = model.current_fatigue_level;
    
    return {
      optimal_chunk_size: Math.floor(base_capacity * (1 - complexity_adjustment) * (1 - fatigue_adjustment)),
      min_chunk_size: Math.max(1, this.optimal_chunk_size * 0.3),
      max_chunk_size: Math.min(15, this.optimal_chunk_size * 1.5)
    };
  }
}

Progressive Disclosure Framework ​

typescript
interface ProgressiveDisclosure {
  // Content hierarchy analysis
  content_hierarchy: ContentHierarchyAnalyzer;
  
  // Disclosure strategies
  disclosure_strategies: DisclosureStrategyEngine;
  
  // Interaction tracking
  interaction_tracker: InteractionTracker;
}

class ProgressiveDisclosureEngine {
  async planDisclosure(fragments: Fragment[], user_context: UserContext): Promise<DisclosurePlan> {
    // Analyze content hierarchy and dependencies
    const hierarchy = await this.analyzeContentHierarchy(fragments);
    
    // Determine disclosure strategy based on user expertise and task context
    const strategy = await this.selectDisclosureStrategy(user_context, hierarchy);
    
    return {
      disclosure_phases: [
        {
          phase: "overview",
          content: hierarchy.top_level_concepts,
          duration_estimate: "30-60 seconds",
          interaction_triggers: ["expand_detail", "skip_to_implementation"]
        },
        {
          phase: "detailed_exploration", 
          content: hierarchy.detailed_explanations,
          duration_estimate: "2-5 minutes",
          interaction_triggers: ["dive_deeper", "see_examples", "back_to_overview"]
        },
        {
          phase: "implementation_guidance",
          content: hierarchy.actionable_steps,
          duration_estimate: "3-10 minutes", 
          interaction_triggers: ["copy_code", "modify_parameters", "next_steps"]
        }
      ],
      adaptation_points: strategy.adaptation_triggers,
      fallback_options: strategy.fallback_strategies
    };
  }
}

Performance Characteristics (Target) ​

Streaming Latency Targets ​

  • Stream Initiation: < 100ms (p95) - connection setup and cognitive profiling
  • First Chunk Delivery: < 200ms (p95) - initial content processing and delivery
  • Inter-Chunk Latency: < 50ms (p95) - content preparation between chunks
  • Adaptation Response: < 100ms (p95) - real-time pacing adjustment

Cognitive Optimization Metrics ​

  • Attention Retention: > 80% sustained attention through full delivery
  • Comprehension Rate: > 85% user understanding of delivered content
  • Cognitive Load Balance: Maintain total load < 85% of user capacity
  • Personalization Accuracy: > 90% correct pacing preference prediction

Technical Performance ​

  • Concurrent Streams: 1000+ simultaneous streaming sessions
  • Memory Efficiency: < 10MB per active stream
  • CPU Utilization: < 5% per stream for pacing calculations
  • Network Efficiency: < 20% overhead for streaming protocol

Integration Points (Planned) ​

Upstream Integration (ACS Component) ​

typescript
interface ACSIntegration {
  // Receive assembled context from ACS
  receiveAssembledContext(context: ACSResponse): Promise<StreamingPlan>;
  
  // Request additional context based on user interaction
  requestAdditionalContext(expansion: ContextExpansion): Promise<ACSResponse>;
  
  // Provide feedback on content utilization
  reportContentUtilization(metrics: UtilizationMetrics): Promise<void>;
}

Downstream Integration (Client Applications) ​

typescript
interface ClientIntegration {
  // Multiple transport protocols
  sse_endpoint: "/stream/sse/:session_id";
  websocket_endpoint: "/stream/ws/:session_id";
  
  // Client capability negotiation
  negotiateCapabilities(client_info: ClientInfo): StreamingCapabilities;
  
  // Feedback collection
  collectFeedback(session_id: string, feedback: UserFeedback): Promise<void>;
}

Current Implementation Plan ​

βœ… Completed (v0) ​

  • Theoretical foundation research - cognitive psychology and attention theory integration
  • Architecture specification (44,000+ lines) - comprehensive streaming system design
  • Batch mode operation - full context delivery without streaming
  • Performance baseline established - metrics collection in batch responses

🚧 Stage 1.5 (v0.1 Target) ​

  • Basic streaming infrastructure - SSE/WebSocket endpoint implementation
  • Simple progressive disclosure - content chunking without adaptive pacing
  • Basic feedback collection - user interaction tracking and response
  • Performance monitoring - streaming-specific metrics and alerting

πŸ“‹ Stage 2 (v0.2+ Target) ​

  • Advanced cognitive modeling - real-time cognitive load assessment
  • Adaptive pacing engine - dynamic adjustment based on user feedback
  • Multi-modal coordination - text, visual, and interactive content streams
  • Machine learning integration - personalized delivery optimization

Development Resources ​

Theoretical Background ​

  • Architecture: ./architecture.md - Comprehensive 44,000+ line specification
  • Cognitive Psychology Research - attention theory, working memory, cognitive load
  • Progressive Disclosure Patterns - UX research and implementation strategies

Integration Documentation ​

Implementation Guides ​

  • Overall System: ../README.md - orchestration overview
  • End-to-End Examples: ../../walkthrough.md - batch mode examples
  • Streaming Patterns - future implementation patterns and best practices

Research & Development Focus ​

Cognitive Science Integration ​

  • Attention span modeling based on task complexity and user expertise
  • Working memory optimization for multi-modal content delivery
  • Fatigue detection and adaptive response strategies
  • Individual differences in cognitive processing patterns

Streaming Technology Optimization ​

  • Low-latency protocols for real-time cognitive adaptation
  • Efficient content encoding for minimal network overhead
  • Progressive enhancement for varied client capabilities
  • Offline-first strategies for unreliable network conditions

User Experience Research ​

  • Optimal pacing patterns for different content types
  • Attention management in multi-tasking environments
  • Accessibility considerations for cognitive diversity
  • Cross-cultural adaptation for different attention patterns

Future Vision (Stage 3+) ​

Advanced Cognitive Features ​

typescript
interface AdvancedCognitiveFeatures {
  // Real-time attention tracking
  attention_monitoring: AttentionTracker;
  
  // Predictive cognitive modeling
  cognitive_prediction: CognitivePredictionEngine;
  
  // Adaptive content generation
  adaptive_content: AdaptiveContentGenerator;
  
  // Multi-user coordination
  collaborative_streaming: CollaborativeStreamingEngine;
}

Brain-Computer Interface Integration ​

typescript
interface BCIIntegration {
  // EEG attention monitoring
  eeg_attention_tracker: EEGAttentionMonitor;
  
  // Eye tracking integration
  eye_tracking: EyeTrackingSystem;
  
  // Physiological stress monitoring
  stress_monitor: PhysiologicalStressTracker;
  
  // Adaptive response system
  physiological_adaptation: PhysiologicalAdaptationEngine;
}

Component Status: Research Complete β†’ Architecture Designed β†’ Implementation Planned (Stage 2)

Current Priority: Maintain batch mode excellence while preparing streaming infrastructure for v0.2+

Next Steps: Begin Stage 1.5 implementation with basic streaming endpoints and simple progressive disclosure patterns.