Experience Layer (L4): Cognitive Experience Engine
Foundation + Cognitive Extension Architecture: L4 provides real-time experience capture with session management (v0.1 ready), plus a comprehensive cognitive processing engine specification for advanced pattern recognition and learning (v0.3+ roadmap).
Experience Layer captures what actually happened (user/agent actions, tool calls, outcomes), compresses raw events into concise, privacy-safe summaries (Experience Units), and retrieves relevant units in milliseconds to enrich context for current requests.
Goals
- Fast retrieval for current requests: p95 < 8 ms, p50 ~ 3 ms (within overall orchestration budget)
- High signal with minimal tokens: short, focused summaries with links to canonical entities (L1)
- Strict privacy: allow/redact/block enforced at ingest and read paths; no PII leakage
- Predictable degradation: when low on time/tokens, return fewer/cheaper units or minimal metadata
How it works (simple)
- Ingest: append-only ExperienceEvent records each notable interaction (who/what/when/outcome) with privacy flags and references to L1 entities/documents.
- Summarize: background process compresses sets of events into ExperienceUnit (1–3 sentences, quality score, entity links). Redaction happens before indexing if required.
- Index: hybrid index (vector + sparse + filters) over ExperienceUnit enables fast and precise retrieval.
- Retrieve: given request intent + budgets + privacy, L4 returns top-K ExperienceUnit with scores and short “reason”.
Interfaces and Integration
- Write (ingest): POST /api/v1/experience with ExperienceEvent.v0; returns
{ id, stored: true }
- Read (retrieval): via existing render_request.v0; planner applies budgets.experience_top_k/time_ms; reply embeds slices.experience[] in render_context_reply.v0
- L1 linkage: ExperienceUnit carries entity refs from L1; retrieval can filter by entities from current request or L1 candidates
- KV policy: pin > compress > evict; pin small “golden” units; compress long tail; evict stale/low-signal
Privacy and Budgets
- Modes: allow | redact | block
- redact: PII is removed before indexing
- block: read path returns only IDs/metadata; no raw text
- Budgets: tokens_max and time_ms strictly respected; degradation path reduces top_k, simplifies scoring, and/or returns minimal results
Metrics and SLO
- Online retrieval latency: p95 < 8 ms, p50 ~ 3 ms
- Quality: Recall@K, Coverage over entities, Novelty vs Redundancy
- Pipeline: ingest p50/p95, summarize p95, index latency, compression ratio
- Privacy: redact_rate; leak_rate = 0 (strict)
- Observability: request_id, user_id/agent_id, counts (ingested, units, pinned, evicted)
🏗️ Architecture Overview (Foundation + Extension)
Current Foundation (v0.1) ✅
Future Cognitive Engine (v0.3+) 🔮
Comprehensive Testing & Validation Framework
Foundation Component Testing
Experience Event Processing:
describe('L4 Experience Layer Foundation Tests', () => {
describe('Event Ingestion & Processing', () => {
test('processes user interaction events', async () => {
const interaction_event = {
type: 'user_query',
user_id: 'user_123',
query: 'implement authentication with JWT',
context: { project_id: 'proj_456', session_id: 'sess_789' },
outcome: { success: true, tokens_used: 1500, quality_score: 0.85 },
timestamp: new Date().toISOString()
};
const result = await l4.ingestEvent(interaction_event);
expect(result.id).toBeDefined();
expect(result.stored).toBe(true);
expect(result.privacy_applied).toBe(true);
});
test('creates experience units from event clusters', async () => {
const events = [
{ type: 'user_query', query: 'JWT authentication setup' },
{ type: 'tool_call', tool: 'code_search', query: 'JWT libraries' },
{ type: 'code_generation', language: 'typescript', success: true },
{ type: 'user_feedback', rating: 5, comment: 'exactly what I needed' }
];
const experience_unit = await l4.createExperienceUnit(events);
expect(experience_unit.summary).toBeDefined();
expect(experience_unit.summary.length).toBeLessThan(200); // Concise
expect(experience_unit.entity_links.length).toBeGreaterThan(0);
expect(experience_unit.quality_score).toBeGreaterThan(0.7);
});
});
describe('Privacy & Security', () => {
test('redacts PII from experience events', async () => {
const event_with_pii = {
type: 'user_query',
query: 'My email john.doe@company.com needs JWT auth',
user_metadata: { name: 'John Doe', role: 'developer' }
};
const processed = await l4.processWithPrivacy(event_with_pii, 'redact');
expect(processed.query).not.toContain('john.doe@company.com');
expect(processed.query).toContain('[EMAIL_REDACTED]');
expect(processed.user_metadata.name).toBe('[NAME_REDACTED]');
});
test('blocks sensitive events in block mode', async () => {
const sensitive_event = {
type: 'code_generation',
code: 'const API_KEY = "sk-secretkey123"',
privacy_level: 'sensitive'
};
const result = await l4.processWithPrivacy(sensitive_event, 'block');
expect(result.blocked).toBe(true);
expect(result.metadata_only).toBe(true);
expect(result.code).toBeUndefined();
});
});
describe('Retrieval Performance', () => {
test('meets retrieval latency SLA', async () => {
const query = {
intent: 'implement database connection pooling',
entities: ['database', 'connection', 'pool'],
top_k: 5,
time_ms: 8
};
const start = Date.now();
const results = await l4.retrieveExperienceUnits(query);
const latency = Date.now() - start;
expect(latency).toBeLessThan(8); // p95 < 8ms SLA
expect(results.units.length).toBeLessThanOrEqual(5);
expect(results.stats.retrieval_time_ms).toBeLessThan(8);
});
});
});
Load Testing Framework
Concurrent Experience Processing:
describe('L4 Production Load Tests', () => {
test('handles concurrent experience ingestion', async () => {
const concurrent_events = Array.from({ length: 200 }, (_, i) => ({
type: 'user_interaction',
user_id: `user_${i}`,
session_id: `session_${Math.floor(i / 10)}`,
query: `test query ${i}`,
outcome: { success: true, quality_score: 0.8 }
}));
const start_time = Date.now();
const results = await Promise.allSettled(
concurrent_events.map(event => l4.ingestEvent(event))
);
const total_time = Date.now() - start_time;
const successful = results.filter(r => r.status === 'fulfilled');
const success_rate = successful.length / results.length;
expect(success_rate).toBeGreaterThan(0.95); // 95%+ success rate
expect(total_time).toBeLessThan(10000); // 200 events in < 10 seconds
});
});
Production Operations Framework
Experience Layer Monitoring
Real-time Metrics:
experience_layer_monitoring:
metrics:
# Event processing metrics
- name: l4_event_ingestion_rate
type: gauge
labels: [event_type, user_segment]
- name: l4_experience_unit_creation_duration
type: histogram
buckets: [0.1, 0.5, 1.0, 2.0, 5.0]
labels: [complexity_level]
- name: l4_retrieval_latency_seconds
type: histogram
buckets: [0.001, 0.003, 0.005, 0.008, 0.015]
labels: [query_complexity]
# Privacy and quality metrics
- name: l4_privacy_redaction_rate
type: gauge
labels: [redaction_type]
- name: l4_experience_quality_score
type: histogram
buckets: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
alerts:
- name: L4HighIngestionLatency
condition: l4_event_ingestion_rate < 100
severity: warning
duration: 2m
- name: L4RetrievalSLAViolation
condition: l4_retrieval_latency_seconds{quantile="0.95"} > 0.008
severity: critical
duration: 1m
Contracts (v0.1)
Inputs
- ExperienceEvent.v0:
- SummarizationJob.v0:
Processing
- Ingest validates schema and privacy; pipeline batches and schedules summarization; indexer updates hybrid index
Outputs
- ExperienceUnit.v0:
- RetrievalReply.v0: { units[], stats: { retrieval_time_ms, top_k, filters } }
SLO / Targets
- Ingest p95 < 20ms; Summarize p95 < 200ms per cluster; Retrieval p95 < 8ms
Edge Cases
- Block mode events → metadata-only stored; redaction failures → quarantine queue
Resilience & Observability
Resilience
- Backpressure on ingest; dead-letter queue for malformed/blocked events
- Circuit breakers around summarizer and indexer; replay-safe jobs
Metrics
- l4_event_ingestion_rate, l4_experience_unit_creation_duration, l4_retrieval_latency_seconds
- l4_privacy_redaction_rate, l4_experience_quality_score
Tracing
- request_id/session_id on ingest and retrieval spans; include counts and privacy decisions
Privacy & Security
Controls
- privacy_mode allow|redact|block at both write/read paths; PII detectors prior to indexing
- Storage class segregation for sensitive units; encryption at rest + in transit
Access
- Role-scoped reads; metadata-only for blocked sessions
Deployment Architecture
Experience Processing Pipeline:
l4_deployment:
services:
event_processor:
image: mnemoverse/l4-processor:latest
replicas: 3
resources:
requests: { cpu: 200m, memory: 512Mi }
limits: { cpu: 1, memory: 2Gi }
experience_indexer:
image: mnemoverse/l4-indexer:latest
replicas: 2
resources:
requests: { cpu: 500m, memory: 1Gi }
retrieval_engine:
image: mnemoverse/l4-retrieval:latest
replicas: 5
resources:
requests: { cpu: 300m, memory: 768Mi }
databases:
events_store:
type: postgresql
partitioning: by_date
retention: 90_days
vector_index:
type: qdrant
collection: experience_units
vector_size: 384
🔮 Future: Cognitive Engine Specification
Note: The Cognitive Engine represents the advanced intelligence layer of L4, planned for v0.3+. This specification defines the architecture for pattern recognition, intelligent summarization, and meta-learning capabilities.
Cognitive Architecture Framework
1. Pattern Recognition Engine
interface PatternRecognitionEngine {
// Identify recurring patterns in user behavior
detectBehavioralPatterns(events: ExperienceEvent[]): Pattern[];
// Recognize problem-solving strategies
analyzeSolutionPatterns(solutions: SolutionEvent[]): StrategyPattern[];
// Identify knowledge gaps and learning opportunities
identifyLearningPatterns(interactions: UserInteraction[]): LearningOpportunity[];
}
interface Pattern {
id: string;
type: 'behavioral' | 'solution' | 'learning' | 'communication';
frequency: number;
confidence: number;
triggers: PatternTrigger[];
outcomes: PatternOutcome[];
}
2. Intelligent Summarization System
interface IntelligentSummarizer {
// Context-aware summarization with different granularities
summarizeExperience(
events: ExperienceEvent[],
context: SummarizationContext
): ExperienceSummary;
// Adaptive summarization based on user expertise level
adaptSummaryToUser(
summary: ExperienceSummary,
user_profile: UserExpertiseProfile
): AdaptedSummary;
// Cross-session pattern summarization
synthesizeLearningJourney(
sessions: UserSession[]
): LearningJourneySummary;
}
3. Cognitive State Machine
interface CognitiveStateMachine {
// Track cognitive state throughout interactions
updateCognitiveState(
current_state: CognitiveState,
new_event: ExperienceEvent
): CognitiveState;
// Predict next likely actions based on cognitive state
predictNextActions(state: CognitiveState): ActionPrediction[];
// Adapt system behavior based on cognitive load
adaptToCognitiveLoad(
load: CognitiveLoadMetrics
): AdaptationStrategy;
}
4. Meta-learning Framework
interface MetaLearningFramework {
// Learn about learning: how users acquire new knowledge
analyzeLearningEffectiveness(
learning_sessions: LearningSession[]
): LearningInsights;
// Optimize experience delivery based on learning patterns
optimizeExperienceDelivery(
user_profile: UserProfile,
learning_insights: LearningInsights
): OptimizationStrategy;
// Continuous improvement of cognitive models
updateCognitiveModels(
feedback: UserFeedback[],
performance_metrics: PerformanceMetrics
): ModelUpdateResult;
}
Cognitive Engine Implementation Roadmap
Phase 1: Foundation (Current)
- ✅ Experience event capture and processing
- ✅ Basic summarization and indexing
- ✅ Privacy-preserving retrieval
- ✅ Session management and context tracking
Phase 2: Pattern Recognition (v0.2)
- 🔮 Behavioral pattern detection
- 🔮 Solution strategy recognition
- 🔮 Learning opportunity identification
- 🔮 Basic cognitive state tracking
Phase 3: Intelligent Processing (v0.3)
- 🔮 Context-aware intelligent summarization
- 🔮 Advanced cognitive state machine
- 🔮 Predictive action recommendation
- 🔮 Adaptive user experience optimization
Phase 4: Meta-learning (v0.4)
- 🔮 Learning effectiveness analysis
- 🔮 Continuous model improvement
- 🔮 Cross-user pattern synthesis
- 🔮 Cognitive model personalization
Implementation Roadmap
Phase 1: Foundation Completion (v0.1) - 3 weeks
- [ ] Complete event ingestion pipeline
- [ ] Implement privacy engine with redaction modes
- [ ] Build hybrid indexing for experience units
- [ ] Optimize retrieval performance (p95 < 8ms)
Phase 2: Enhanced Foundation (v0.2) - 4 weeks
- [ ] Advanced session management
- [ ] Quality scoring improvements
- [ ] Cross-session pattern detection (basic)
- [ ] Enhanced monitoring and observability
Phase 3: Cognitive Engine MVP (v0.3) - 8 weeks
- [ ] Pattern recognition engine implementation
- [ ] Intelligent summarization system
- [ ] Basic cognitive state machine
- [ ] Meta-learning framework foundation
Success Criteria
Foundation (v0.1):
- Experience retrieval latency p95 < 8ms
- Privacy redaction accuracy > 99%
- Event processing throughput > 1000 events/second
- Experience unit quality score > 0.8
Cognitive Engine (v0.3):
- Pattern recognition accuracy > 85%
- Summarization quality score > 0.9
- User satisfaction with adaptive experience > 4.2/5.0
- Learning effectiveness improvement > 30%
Related Documentation
Current Implementation:
- Pipeline Architecture — Event processing and unit creation
- Privacy Framework — PII handling and redaction modes
- Retrieval System — Fast experience unit retrieval
- Metrics & SLOs — Performance monitoring and targets
Future Extensions:
- 🔮 Cognitive Engine Specification — Advanced pattern recognition and learning
- 🔮 Search Alias — Fast hints channel powering retrieval
- �️ Roadmap — Phased delivery including cognitive extensions
System Integration:
- Contracts & APIs — Interface specifications
- L1 Integration — Knowledge base linkage
- L2 Integration — Project context awareness
- Overall Architecture — Complete system overview
Status: Foundation ready (v0.1) → Cognitive engine specified (v0.3+) → Production target (v0.2)
Next Priority: Complete foundation implementation with privacy engine, hybrid indexing, and performance optimization to achieve p95 < 8ms retrieval SLA.
Experience Layer (L4)
Task-level trails: task → nodes used → result → validation. Search across solved paths.