Skip to content

Framework Integration Architecture ​

Purpose: Technical specification for implementing progressive evaluation framework composition with intelligent routing, cost optimization, and enterprise-grade monitoring.

Integration Philosophy: Start with proven core frameworks, scale intelligently based on requirements and system maturity.


Technical Architecture Overview ​

Framework Adapter Pattern ​

python
from abc import ABC, abstractmethod
from typing import Dict, Any, Optional
from dataclasses import dataclass
from datetime import datetime

@dataclass
class EvaluationRequest:
    """Standardized evaluation request across all frameworks"""
    layer: str  # L1, L2, L3, L4
    query: str
    context: Dict[str, Any]
    response: str
    priority: str = 'medium'  # low, medium, high, critical
    budget_constraint: Optional[float] = None  # USD
    quality_requirement: float = 0.8  # 0.0-1.0

@dataclass
class EvaluationResult:
    """Standardized evaluation result across all frameworks"""
    framework_name: str
    layer: str
    overall_score: float
    dimension_scores: Dict[str, float]  # effectiveness, efficiency, safety, ux
    cost_usd: float
    latency_ms: int
    confidence: float
    metadata: Dict[str, Any]
    timestamp: datetime

class EvaluationFrameworkAdapter(ABC):
    """Unified interface for all evaluation frameworks"""
    
    @abstractmethod
    async def evaluate(
        self, 
        request: EvaluationRequest
    ) -> EvaluationResult:
        """Execute evaluation with framework-specific logic"""
        pass
    
    @abstractmethod
    def get_capabilities(self) -> Dict[str, Any]:
        """Return framework capabilities and specializations"""
        pass
    
    @abstractmethod
    def estimate_cost(self, request: EvaluationRequest) -> float:
        """Predict evaluation cost in USD"""
        pass
    
    @abstractmethod
    def get_quality_score(self) -> int:
        """Return framework quality score from research analysis"""
        pass

Core Framework Implementations ​

1. Semantic Kernel Adapter (Primary Orchestrator) ​

python
class SemanticKernelAdapter(EvaluationFrameworkAdapter):
    """Microsoft Semantic Kernel + Azure AI Foundry integration"""
    
    def __init__(self, azure_config: Dict[str, str]):
        self.kernel = self._setup_kernel_with_tracing(azure_config)
        self.ai_foundry_client = self._setup_ai_foundry_client(azure_config)
        self.quality_score = 91  # From research analysis
    
    async def evaluate(self, request: EvaluationRequest) -> EvaluationResult:
        """Enterprise-grade evaluation with full observability"""
        
        # Execute with automatic tracing
        start_time = datetime.utcnow()
        
        with self._trace_context(f"eval_{request.layer}_{request.priority}"):
            # Azure AI Foundry evaluation
            azure_result = await self.ai_foundry_client.evaluate(
                query=request.query,
                response=request.response,
                context=request.context.get('retrieval_context', ''),
                evaluators=['relevance', 'groundedness', 'coherence']
            )
            
            # Cost tracking
            cost = self._calculate_azure_cost(azure_result)
            
            # Enterprise compliance check
            compliance_status = await self._check_enterprise_compliance(
                request, azure_result
            )
            
        latency_ms = (datetime.utcnow() - start_time).total_seconds() * 1000
        
        return EvaluationResult(
            framework_name='semantic_kernel',
            layer=request.layer,
            overall_score=azure_result['composite_score'],
            dimension_scores={
                'effectiveness': azure_result['relevance']['score'],
                'safety': azure_result['content_safety']['score'],
                'coherence': azure_result['coherence']['score'],
                'compliance': compliance_status['score']
            },
            cost_usd=cost,
            latency_ms=int(latency_ms),
            confidence=0.9,  # High confidence for enterprise framework
            metadata={
                'trace_id': self._get_current_trace_id(),
                'compliance_status': compliance_status,
                'azure_endpoint': azure_result.get('endpoint_used')
            },
            timestamp=datetime.utcnow()
        )
    
    def get_capabilities(self) -> Dict[str, Any]:
        return {
            'layers': ['L1', 'L2', 'L3', 'L4'],
            'specializations': ['enterprise_monitoring', 'compliance', 'cost_tracking'],
            'deployment': 'azure_cloud',
            'evaluation_types': ['quality', 'safety', 'performance'],
            'enterprise_features': True,
            'sla_support': True
        }
    
    def estimate_cost(self, request: EvaluationRequest) -> float:
        """Estimate Azure AI Foundry costs"""
        base_cost = 0.01  # Base evaluation cost
        
        # Priority multiplier
        priority_multipliers = {'low': 0.5, 'medium': 1.0, 'high': 1.5, 'critical': 2.0}
        
        # Layer complexity multiplier
        layer_multipliers = {'L1': 1.0, 'L2': 1.2, 'L3': 1.5, 'L4': 1.8}
        
        return base_cost * priority_multipliers[request.priority] * layer_multipliers[request.layer]

2. RAGAS Framework Adapter (RAG Specialist) ​

python
class RAGASAdapter(EvaluationFrameworkAdapter):
    """RAGAS framework for RAG-specific evaluation"""
    
    def __init__(self):
        self.quality_score = 90  # From research analysis
        from ragas import evaluate
        from ragas.metrics import faithfulness, answer_relevancy, context_precision, context_recall
        
        self.metrics = [faithfulness, answer_relevancy, context_precision, context_recall]
        self.evaluate_func = evaluate
    
    async def evaluate(self, request: EvaluationRequest) -> EvaluationResult:
        """RAG-specific evaluation with mathematical foundations"""
        
        if request.layer != 'L1':
            # RAGAS specialized for L1 Knowledge Graph layer
            return self._create_not_applicable_result(request)
        
        start_time = datetime.utcnow()
        
        # Prepare RAGAS dataset format
        ragas_dataset = {
            'question': [request.query],
            'answer': [request.response],
            'contexts': [request.context.get('retrieval_context', [])],
            'ground_truths': request.context.get('ground_truth', [''])
        }
        
        # Execute RAGAS evaluation
        result = self.evaluate_func(
            dataset=ragas_dataset,
            metrics=self.metrics
        )
        
        latency_ms = (datetime.utcnow() - start_time).total_seconds() * 1000
        
        return EvaluationResult(
            framework_name='ragas',
            layer=request.layer,
            overall_score=result['ragas_score'],
            dimension_scores={
                'effectiveness': result['answer_relevancy'],
                'faithfulness': result['faithfulness'], 
                'context_precision': result['context_precision'],
                'context_recall': result['context_recall']
            },
            cost_usd=self._estimate_api_cost(request),
            latency_ms=int(latency_ms),
            confidence=0.85,  # High confidence for RAG specialization
            metadata={
                'metrics_used': [metric.name for metric in self.metrics],
                'mathematical_foundation': 'verified',
                'specialization': 'RAG_evaluation'
            },
            timestamp=datetime.utcnow()
        )
    
    def get_capabilities(self) -> Dict[str, Any]:
        return {
            'layers': ['L1'],  # Specialized for Knowledge Graph
            'specializations': ['rag_evaluation', 'context_assessment', 'faithfulness'],
            'deployment': 'local_or_api',
            'evaluation_types': ['effectiveness', 'faithfulness'],
            'mathematical_foundation': True,
            'research_backed': True
        }

3. DeepEval Adapter (Development Testing) ​

python
class DeepEvalAdapter(EvaluationFrameworkAdapter):
    """DeepEval framework for developer-centric testing"""
    
    def __init__(self):
        self.quality_score = 87  # From research analysis
        from deepeval.metrics import AnswerRelevancyMetric, ConversationCompletenessMetric
        from deepeval.test_case import LLMTestCase, ConversationalTestCase
        
        self.metrics = {
            'answer_relevancy': AnswerRelevancyMetric(threshold=0.7),
            'conversation_completeness': ConversationCompletenessMetric()
        }
    
    async def evaluate(self, request: EvaluationRequest) -> EvaluationResult:
        """Developer-friendly evaluation with pytest-style interface"""
        
        start_time = datetime.utcnow()
        
        if request.layer == 'L4' and 'conversation_history' in request.context:
            # Conversational evaluation for L4 Experience Layer
            result = await self._evaluate_conversation(request)
        else:
            # Standard single-turn evaluation
            result = await self._evaluate_single_turn(request)
        
        latency_ms = (datetime.utcnow() - start_time).total_seconds() * 1000
        
        return EvaluationResult(
            framework_name='deepeval',
            layer=request.layer,
            overall_score=result['overall_score'],
            dimension_scores=result['dimension_scores'],
            cost_usd=self._estimate_api_cost(request),  # Local compute preferred
            latency_ms=int(latency_ms),
            confidence=0.8,  # Good confidence for development testing
            metadata={
                'testing_framework': 'pytest_compatible',
                'local_execution': True,
                'developer_friendly': True
            },
            timestamp=datetime.utcnow()
        )
    
    def get_capabilities(self) -> Dict[str, Any]:
        return {
            'layers': ['L4', 'Development'],
            'specializations': ['conversation_evaluation', 'pytest_integration', 'local_testing'],
            'deployment': 'local_preferred',
            'evaluation_types': ['quality', 'conversation_completeness'],
            'developer_experience': True,
            'ci_cd_integration': True
        }

Intelligent Framework Router ​

python
class IntelligentFrameworkRouter:
    """Smart framework selection based on requirements and constraints"""
    
    def __init__(self):
        self.framework_registry = {
            'semantic_kernel': SemanticKernelAdapter,
            'ragas': RAGASAdapter,
            'deepeval': DeepEvalAdapter,
            'langsmith': LangSmithAdapter,  # Phase 2
            'trulens': TruLensAdapter,      # Phase 2
            'hf_evaluate': HFEvaluateAdapter,  # Phase 3
            'llm_judge': LLMJudgeAdapter    # Phase 3
        }
        
        self.layer_specializations = {
            'L1': ['ragas', 'semantic_kernel', 'hf_evaluate'],
            'L2': ['langsmith', 'semantic_kernel', 'deepeval'],
            'L3': ['llm_judge', 'trulens', 'semantic_kernel'],
            'L4': ['langsmith', 'deepeval', 'semantic_kernel']
        }
    
    def select_optimal_frameworks(
        self, 
        request: EvaluationRequest,
        constraints: Dict[str, Any]
    ) -> List[str]:
        """Intelligent framework selection algorithm"""
        
        # Step 1: Get layer-appropriate frameworks
        candidate_frameworks = self.layer_specializations.get(request.layer, [])
        
        # Step 2: Filter by budget constraints
        if request.budget_constraint:
            candidate_frameworks = self._filter_by_budget(
                candidate_frameworks, request
            )
        
        # Step 3: Select based on priority
        if request.priority == 'critical':
            # Use multiple frameworks for consensus
            return candidate_frameworks[:3]
        elif request.priority == 'high':
            # Use primary + secondary framework
            return candidate_frameworks[:2] 
        else:
            # Use single best framework
            return [candidate_frameworks[0]]
    
    def _filter_by_budget(
        self, 
        frameworks: List[str], 
        request: EvaluationRequest
    ) -> List[str]:
        """Filter frameworks by budget constraints"""
        
        affordable_frameworks = []
        for framework_name in frameworks:
            framework_class = self.framework_registry[framework_name]
            adapter = framework_class()
            estimated_cost = adapter.estimate_cost(request)
            
            if estimated_cost <= request.budget_constraint:
                affordable_frameworks.append(framework_name)
        
        return affordable_frameworks

Cost Optimization Strategies ​

Budget Management System ​

python
class EvaluationBudgetManager:
    """Intelligent budget management with cost optimization"""
    
    def __init__(self, daily_budget: float = 100.0):
        self.daily_budget = daily_budget
        self.cost_tracker = CostTracker()
        self.optimization_strategies = [
            CachingStrategy(),
            AdaptiveEvaluatorStrategy(),
            BatchingStrategy()
        ]
    
    async def optimize_evaluation_plan(
        self, 
        requests: List[EvaluationRequest]
    ) -> List[EvaluationRequest]:
        """Optimize evaluation plan for cost efficiency"""
        
        current_spend = await self.cost_tracker.get_daily_spend()
        remaining_budget = self.daily_budget - current_spend
        
        # Apply optimization strategies
        optimized_requests = requests
        for strategy in self.optimization_strategies:
            optimized_requests = await strategy.optimize(
                optimized_requests, remaining_budget
            )
        
        return optimized_requests

class CachingStrategy:
    """Intelligent caching for 60-80% cost reduction"""
    
    def __init__(self):
        self.cache = EvaluationCache()
    
    async def optimize(
        self, 
        requests: List[EvaluationRequest], 
        budget: float
    ) -> List[EvaluationRequest]:
        """Apply caching optimization"""
        
        optimized = []
        for request in requests:
            cache_key = self._generate_cache_key(request)
            
            if cached_result := await self.cache.get(cache_key):
                # Use cached result, zero additional cost
                request.cached_result = cached_result
                request.estimated_cost = 0.0
            else:
                # Will need fresh evaluation
                pass
            
            optimized.append(request)
        
        return optimized

Progressive Deployment Roadmap ​

Phase 1: Core Framework Deployment (Weeks 1-4) ​

yaml
deployment_plan:
  week_1:
    tasks:
      - setup_azure_ai_foundry: "Configure Semantic Kernel integration"
      - implement_ragas_adapter: "RAG evaluation for L1 layer"
      - basic_deepeval_integration: "Development testing workflows"
    deliverables:
      - core_framework_orchestrator: "3 framework integration"
      - cost_tracking_basic: "Budget monitoring"
      - layer_routing_l1_l4: "Basic intelligent routing"
    
  week_2:
    tasks:
      - intelligent_router_implementation: "Smart framework selection"
      - cost_optimization_basic: "Caching and budget controls" 
      - cross_layer_evaluation_foundation: "Basic coherence analysis"
    deliverables:
      - production_ready_orchestrator: "80% evaluation coverage"
      - cost_dashboard: "Real-time budget tracking"
      - quality_monitoring: "Basic SLA tracking"
  
  week_3_4:
    tasks:
      - enterprise_compliance_integration: "SOC2, GDPR compliance"
      - advanced_routing_logic: "Priority-based framework selection"
      - comprehensive_testing: "Full integration testing"
    deliverables:
      - enterprise_ready_system: "Production deployment ready"
      - comprehensive_monitoring: "Full observability"
      - documentation_complete: "Deployment guides"

success_criteria:
  cost_efficiency: "30-50% cost reduction through optimization"
  coverage: "80%+ evaluation needs met with 3 core frameworks"
  latency: "<2 seconds average evaluation time"
  reliability: ">99% uptime for core evaluation capabilities"

Phase 2: Enhanced Framework Integration (Weeks 5-8) ​

yaml
enhanced_deployment:
  langsmith_integration:
    trigger: "Application tracing requirements"
    timeline: "Week 5-6"
    capabilities: ["conversation_evaluation", "human_annotation", "a_b_testing"]
    
  trulens_integration:
    trigger: "Comprehensive observability requirements"
    timeline: "Week 7-8"
    capabilities: ["system_instrumentation", "performance_monitoring", "anomaly_detection"]
    
  advanced_features:
    cross_layer_coherence: "Novel evaluation methodology implementation"
    multi_framework_consensus: "Critical decision validation"
    causal_evaluation: "Layer attribution analysis"

success_criteria:
  coverage_improvement: "90%+ evaluation needs coverage"
  advanced_capabilities: "Cross-layer coherence analysis operational"
  enterprise_features: "Full enterprise monitoring and compliance"

Documentation Index ​


Document Status: Alpha | Last Updated: 2025-09-07 | Next Review: Phase 1 Implementation Completion