Framework Integration Architecture β
Purpose: Technical specification for implementing progressive evaluation framework composition with intelligent routing, cost optimization, and enterprise-grade monitoring.
Integration Philosophy: Start with proven core frameworks, scale intelligently based on requirements and system maturity.
Technical Architecture Overview β
Framework Adapter Pattern β
python
from abc import ABC, abstractmethod
from typing import Dict, Any, Optional
from dataclasses import dataclass
from datetime import datetime
@dataclass
class EvaluationRequest:
"""Standardized evaluation request across all frameworks"""
layer: str # L1, L2, L3, L4
query: str
context: Dict[str, Any]
response: str
priority: str = 'medium' # low, medium, high, critical
budget_constraint: Optional[float] = None # USD
quality_requirement: float = 0.8 # 0.0-1.0
@dataclass
class EvaluationResult:
"""Standardized evaluation result across all frameworks"""
framework_name: str
layer: str
overall_score: float
dimension_scores: Dict[str, float] # effectiveness, efficiency, safety, ux
cost_usd: float
latency_ms: int
confidence: float
metadata: Dict[str, Any]
timestamp: datetime
class EvaluationFrameworkAdapter(ABC):
"""Unified interface for all evaluation frameworks"""
@abstractmethod
async def evaluate(
self,
request: EvaluationRequest
) -> EvaluationResult:
"""Execute evaluation with framework-specific logic"""
pass
@abstractmethod
def get_capabilities(self) -> Dict[str, Any]:
"""Return framework capabilities and specializations"""
pass
@abstractmethod
def estimate_cost(self, request: EvaluationRequest) -> float:
"""Predict evaluation cost in USD"""
pass
@abstractmethod
def get_quality_score(self) -> int:
"""Return framework quality score from research analysis"""
pass
Core Framework Implementations β
1. Semantic Kernel Adapter (Primary Orchestrator) β
python
class SemanticKernelAdapter(EvaluationFrameworkAdapter):
"""Microsoft Semantic Kernel + Azure AI Foundry integration"""
def __init__(self, azure_config: Dict[str, str]):
self.kernel = self._setup_kernel_with_tracing(azure_config)
self.ai_foundry_client = self._setup_ai_foundry_client(azure_config)
self.quality_score = 91 # From research analysis
async def evaluate(self, request: EvaluationRequest) -> EvaluationResult:
"""Enterprise-grade evaluation with full observability"""
# Execute with automatic tracing
start_time = datetime.utcnow()
with self._trace_context(f"eval_{request.layer}_{request.priority}"):
# Azure AI Foundry evaluation
azure_result = await self.ai_foundry_client.evaluate(
query=request.query,
response=request.response,
context=request.context.get('retrieval_context', ''),
evaluators=['relevance', 'groundedness', 'coherence']
)
# Cost tracking
cost = self._calculate_azure_cost(azure_result)
# Enterprise compliance check
compliance_status = await self._check_enterprise_compliance(
request, azure_result
)
latency_ms = (datetime.utcnow() - start_time).total_seconds() * 1000
return EvaluationResult(
framework_name='semantic_kernel',
layer=request.layer,
overall_score=azure_result['composite_score'],
dimension_scores={
'effectiveness': azure_result['relevance']['score'],
'safety': azure_result['content_safety']['score'],
'coherence': azure_result['coherence']['score'],
'compliance': compliance_status['score']
},
cost_usd=cost,
latency_ms=int(latency_ms),
confidence=0.9, # High confidence for enterprise framework
metadata={
'trace_id': self._get_current_trace_id(),
'compliance_status': compliance_status,
'azure_endpoint': azure_result.get('endpoint_used')
},
timestamp=datetime.utcnow()
)
def get_capabilities(self) -> Dict[str, Any]:
return {
'layers': ['L1', 'L2', 'L3', 'L4'],
'specializations': ['enterprise_monitoring', 'compliance', 'cost_tracking'],
'deployment': 'azure_cloud',
'evaluation_types': ['quality', 'safety', 'performance'],
'enterprise_features': True,
'sla_support': True
}
def estimate_cost(self, request: EvaluationRequest) -> float:
"""Estimate Azure AI Foundry costs"""
base_cost = 0.01 # Base evaluation cost
# Priority multiplier
priority_multipliers = {'low': 0.5, 'medium': 1.0, 'high': 1.5, 'critical': 2.0}
# Layer complexity multiplier
layer_multipliers = {'L1': 1.0, 'L2': 1.2, 'L3': 1.5, 'L4': 1.8}
return base_cost * priority_multipliers[request.priority] * layer_multipliers[request.layer]
2. RAGAS Framework Adapter (RAG Specialist) β
python
class RAGASAdapter(EvaluationFrameworkAdapter):
"""RAGAS framework for RAG-specific evaluation"""
def __init__(self):
self.quality_score = 90 # From research analysis
from ragas import evaluate
from ragas.metrics import faithfulness, answer_relevancy, context_precision, context_recall
self.metrics = [faithfulness, answer_relevancy, context_precision, context_recall]
self.evaluate_func = evaluate
async def evaluate(self, request: EvaluationRequest) -> EvaluationResult:
"""RAG-specific evaluation with mathematical foundations"""
if request.layer != 'L1':
# RAGAS specialized for L1 Knowledge Graph layer
return self._create_not_applicable_result(request)
start_time = datetime.utcnow()
# Prepare RAGAS dataset format
ragas_dataset = {
'question': [request.query],
'answer': [request.response],
'contexts': [request.context.get('retrieval_context', [])],
'ground_truths': request.context.get('ground_truth', [''])
}
# Execute RAGAS evaluation
result = self.evaluate_func(
dataset=ragas_dataset,
metrics=self.metrics
)
latency_ms = (datetime.utcnow() - start_time).total_seconds() * 1000
return EvaluationResult(
framework_name='ragas',
layer=request.layer,
overall_score=result['ragas_score'],
dimension_scores={
'effectiveness': result['answer_relevancy'],
'faithfulness': result['faithfulness'],
'context_precision': result['context_precision'],
'context_recall': result['context_recall']
},
cost_usd=self._estimate_api_cost(request),
latency_ms=int(latency_ms),
confidence=0.85, # High confidence for RAG specialization
metadata={
'metrics_used': [metric.name for metric in self.metrics],
'mathematical_foundation': 'verified',
'specialization': 'RAG_evaluation'
},
timestamp=datetime.utcnow()
)
def get_capabilities(self) -> Dict[str, Any]:
return {
'layers': ['L1'], # Specialized for Knowledge Graph
'specializations': ['rag_evaluation', 'context_assessment', 'faithfulness'],
'deployment': 'local_or_api',
'evaluation_types': ['effectiveness', 'faithfulness'],
'mathematical_foundation': True,
'research_backed': True
}
3. DeepEval Adapter (Development Testing) β
python
class DeepEvalAdapter(EvaluationFrameworkAdapter):
"""DeepEval framework for developer-centric testing"""
def __init__(self):
self.quality_score = 87 # From research analysis
from deepeval.metrics import AnswerRelevancyMetric, ConversationCompletenessMetric
from deepeval.test_case import LLMTestCase, ConversationalTestCase
self.metrics = {
'answer_relevancy': AnswerRelevancyMetric(threshold=0.7),
'conversation_completeness': ConversationCompletenessMetric()
}
async def evaluate(self, request: EvaluationRequest) -> EvaluationResult:
"""Developer-friendly evaluation with pytest-style interface"""
start_time = datetime.utcnow()
if request.layer == 'L4' and 'conversation_history' in request.context:
# Conversational evaluation for L4 Experience Layer
result = await self._evaluate_conversation(request)
else:
# Standard single-turn evaluation
result = await self._evaluate_single_turn(request)
latency_ms = (datetime.utcnow() - start_time).total_seconds() * 1000
return EvaluationResult(
framework_name='deepeval',
layer=request.layer,
overall_score=result['overall_score'],
dimension_scores=result['dimension_scores'],
cost_usd=self._estimate_api_cost(request), # Local compute preferred
latency_ms=int(latency_ms),
confidence=0.8, # Good confidence for development testing
metadata={
'testing_framework': 'pytest_compatible',
'local_execution': True,
'developer_friendly': True
},
timestamp=datetime.utcnow()
)
def get_capabilities(self) -> Dict[str, Any]:
return {
'layers': ['L4', 'Development'],
'specializations': ['conversation_evaluation', 'pytest_integration', 'local_testing'],
'deployment': 'local_preferred',
'evaluation_types': ['quality', 'conversation_completeness'],
'developer_experience': True,
'ci_cd_integration': True
}
Intelligent Framework Router β
python
class IntelligentFrameworkRouter:
"""Smart framework selection based on requirements and constraints"""
def __init__(self):
self.framework_registry = {
'semantic_kernel': SemanticKernelAdapter,
'ragas': RAGASAdapter,
'deepeval': DeepEvalAdapter,
'langsmith': LangSmithAdapter, # Phase 2
'trulens': TruLensAdapter, # Phase 2
'hf_evaluate': HFEvaluateAdapter, # Phase 3
'llm_judge': LLMJudgeAdapter # Phase 3
}
self.layer_specializations = {
'L1': ['ragas', 'semantic_kernel', 'hf_evaluate'],
'L2': ['langsmith', 'semantic_kernel', 'deepeval'],
'L3': ['llm_judge', 'trulens', 'semantic_kernel'],
'L4': ['langsmith', 'deepeval', 'semantic_kernel']
}
def select_optimal_frameworks(
self,
request: EvaluationRequest,
constraints: Dict[str, Any]
) -> List[str]:
"""Intelligent framework selection algorithm"""
# Step 1: Get layer-appropriate frameworks
candidate_frameworks = self.layer_specializations.get(request.layer, [])
# Step 2: Filter by budget constraints
if request.budget_constraint:
candidate_frameworks = self._filter_by_budget(
candidate_frameworks, request
)
# Step 3: Select based on priority
if request.priority == 'critical':
# Use multiple frameworks for consensus
return candidate_frameworks[:3]
elif request.priority == 'high':
# Use primary + secondary framework
return candidate_frameworks[:2]
else:
# Use single best framework
return [candidate_frameworks[0]]
def _filter_by_budget(
self,
frameworks: List[str],
request: EvaluationRequest
) -> List[str]:
"""Filter frameworks by budget constraints"""
affordable_frameworks = []
for framework_name in frameworks:
framework_class = self.framework_registry[framework_name]
adapter = framework_class()
estimated_cost = adapter.estimate_cost(request)
if estimated_cost <= request.budget_constraint:
affordable_frameworks.append(framework_name)
return affordable_frameworks
Cost Optimization Strategies β
Budget Management System β
python
class EvaluationBudgetManager:
"""Intelligent budget management with cost optimization"""
def __init__(self, daily_budget: float = 100.0):
self.daily_budget = daily_budget
self.cost_tracker = CostTracker()
self.optimization_strategies = [
CachingStrategy(),
AdaptiveEvaluatorStrategy(),
BatchingStrategy()
]
async def optimize_evaluation_plan(
self,
requests: List[EvaluationRequest]
) -> List[EvaluationRequest]:
"""Optimize evaluation plan for cost efficiency"""
current_spend = await self.cost_tracker.get_daily_spend()
remaining_budget = self.daily_budget - current_spend
# Apply optimization strategies
optimized_requests = requests
for strategy in self.optimization_strategies:
optimized_requests = await strategy.optimize(
optimized_requests, remaining_budget
)
return optimized_requests
class CachingStrategy:
"""Intelligent caching for 60-80% cost reduction"""
def __init__(self):
self.cache = EvaluationCache()
async def optimize(
self,
requests: List[EvaluationRequest],
budget: float
) -> List[EvaluationRequest]:
"""Apply caching optimization"""
optimized = []
for request in requests:
cache_key = self._generate_cache_key(request)
if cached_result := await self.cache.get(cache_key):
# Use cached result, zero additional cost
request.cached_result = cached_result
request.estimated_cost = 0.0
else:
# Will need fresh evaluation
pass
optimized.append(request)
return optimized
Progressive Deployment Roadmap β
Phase 1: Core Framework Deployment (Weeks 1-4) β
yaml
deployment_plan:
week_1:
tasks:
- setup_azure_ai_foundry: "Configure Semantic Kernel integration"
- implement_ragas_adapter: "RAG evaluation for L1 layer"
- basic_deepeval_integration: "Development testing workflows"
deliverables:
- core_framework_orchestrator: "3 framework integration"
- cost_tracking_basic: "Budget monitoring"
- layer_routing_l1_l4: "Basic intelligent routing"
week_2:
tasks:
- intelligent_router_implementation: "Smart framework selection"
- cost_optimization_basic: "Caching and budget controls"
- cross_layer_evaluation_foundation: "Basic coherence analysis"
deliverables:
- production_ready_orchestrator: "80% evaluation coverage"
- cost_dashboard: "Real-time budget tracking"
- quality_monitoring: "Basic SLA tracking"
week_3_4:
tasks:
- enterprise_compliance_integration: "SOC2, GDPR compliance"
- advanced_routing_logic: "Priority-based framework selection"
- comprehensive_testing: "Full integration testing"
deliverables:
- enterprise_ready_system: "Production deployment ready"
- comprehensive_monitoring: "Full observability"
- documentation_complete: "Deployment guides"
success_criteria:
cost_efficiency: "30-50% cost reduction through optimization"
coverage: "80%+ evaluation needs met with 3 core frameworks"
latency: "<2 seconds average evaluation time"
reliability: ">99% uptime for core evaluation capabilities"
Phase 2: Enhanced Framework Integration (Weeks 5-8) β
yaml
enhanced_deployment:
langsmith_integration:
trigger: "Application tracing requirements"
timeline: "Week 5-6"
capabilities: ["conversation_evaluation", "human_annotation", "a_b_testing"]
trulens_integration:
trigger: "Comprehensive observability requirements"
timeline: "Week 7-8"
capabilities: ["system_instrumentation", "performance_monitoring", "anomaly_detection"]
advanced_features:
cross_layer_coherence: "Novel evaluation methodology implementation"
multi_framework_consensus: "Critical decision validation"
causal_evaluation: "Layer attribution analysis"
success_criteria:
coverage_improvement: "90%+ evaluation needs coverage"
advanced_capabilities: "Cross-layer coherence analysis operational"
enterprise_features: "Full enterprise monitoring and compliance"
Documentation Index β
- Cost Optimization Strategies β Budget management and optimization techniques
- Cross-Layer Evaluation Methodology β Novel coherence analysis implementation
- Framework Performance Benchmarks β Performance comparison and SLA definitions
Document Status: Alpha | Last Updated: 2025-09-07 | Next Review: Phase 1 Implementation Completion