Skip to content

Federated MCP Documentation โ€‹

Complete guide to implementing federated MCP calls between independent services in the Mnemoverse ecosystem.

๐Ÿš€ Start Here โ€‹

For New Users โ€‹

For Developers โ€‹

๐Ÿ“š What's Covered โ€‹

โœ… Working Solutions โ€‹

  • Cross-Service Communication - MCP servers talking to each other
  • Dual Protocol Support - HTTP REST API + MCP JSON-RPC endpoints
  • Auto-Discovery - Services find each other automatically
  • Production Ready - Tested, documented, and deployed

๐Ÿงช Test Results โ€‹

  • Performance: 0.01-0.09 second response times
  • Reliability: 100% test success rate
  • Scale: 9899+ characters in single document retrieval
  • Concurrency: 1.4x speedup for parallel requests

๐Ÿ”— Quick Navigation โ€‹

DocumentPurposeAudience
OverviewHigh-level explanationAll users
ArchitectureSystem designDevelopers, Architects
ImplementationCode examplesDevelopers

๐Ÿ› ๏ธ Quick Start โ€‹

bash
# Start MCP documentation server
cd mnemoverse-docs && node api-server.js

# Test federated MCP integration  
cd mnemoverse-research-library && python test_comprehensive_federated_mcp.py

๐Ÿ’ก Key Concepts โ€‹

  • Federated Calls: Services calling each other's MCP tools
  • MCP Protocol: Standard JSON-RPC 2.0 for AI agent integration
  • Dual Endpoints: Same functionality via HTTP REST or MCP JSON-RPC
  • Auto-Discovery: Services find each other via /.well-known/mcp

๐ŸŽฏ Use Cases โ€‹

  1. Enhanced Research Responses - AI gets real-time access to documentation
  2. Cross-Service Integration - Different parts of ecosystem communicate
  3. External Tool Access - Third-party services can use MCP endpoints
  4. Development Efficiency - Standardized way to expose and consume tools

Ready to explore? Start with the ๐ŸŽฏ Overview for a simple explanation!